1、通过动手操作和写不同的乘法算式,认识倍数和因数;这里的3篇《因数与倍数》小学教案是快回答小编为您分享的因数与倍数教案的相关范文,欢迎查看参考。
《因数与倍数》小学教案 篇一
设计说明
1.自主学习,构建知识网。
一位学者曾说过:“今后的文盲不再是不识字的人,而是那些不会学习的人。”所以当今社会,自主学习就显得尤为重要。因此本节课在设计上,着重引导学生自主将这部分内容进行归纳和整理,形成全面的结构图,既培养了学生整理信息的能力,又使他们对所学知识有一个完整的、系统的印象,在头脑中形成清晰的思路。
2.重点复习,强化提高。
在复习过程中先使学生进一步明确因数与倍数的概念及2、5、3倍数的特征。然后在小组内合作整理相关知识,把这部分内容梳理后,教师结合学生的汇报引导学生系统地复习有关倍数和因数的知识。最后通过练习巩固这部分的知识点。
课前准备
教师准备PPT课件
学生准备习题卡
教学过程
回顾整理,建构知识网络
1.同学们回忆一下,因数与倍数这一单元最基本的概念有什么?
2.小组合作,整理“因数与倍数”的相关知识,对所学的知识用自己喜欢的方式进行整理,对有特色的整理方式可以在班内交流。
3.把整理的内容在班内交流,展示学生作品。
因数与倍数
4.教师组织学生汇报,引导学生系统地复习有关因数与倍数的知识,试着举例说明。(板书重点知识)
设计意图:在小组合作中梳理因数与倍数的相关知识,使学生对数的概念有进一步的认识。
⊙重点复习,强化提高
1.课件出示教材118页1题,学生独立完成后汇报结果。
(1)根据2的倍数的特征:“个位上是0,2,4,6,8的数都是2的倍数”,可以看出56,204,630,22,78这五个数符合条件,它们都是2的倍数。
(2)根据5的倍数的特征:“个位上是0或5的数都是5的倍数”,可以看出195,630,65这三个数符合条件,它们都是5的倍数。
(3)根据3的倍数的特征:“一个数各个数位上的数的和是3的倍数,这个数就是3的倍数”,可以看出87,195,204,630,57,78这六个数符合条件,它们是3的倍数。
(4)根据质数的特征:“只有1和它本身两个因数”,可以看出79,31,83这三个数是质数。
(5)根据合数的特征:“除了1和它本身还有其他因数”,可以看出除了79,31,83这三个质数,其他的数都是合数。
(6)根据奇数的特征:79,87,195,31,57,65,83这七个数是奇数。
《因数与倍数》小学教案 篇二
课前思考:
1.概念揭示变逻辑演绎为活动建构。因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。如果能借助学生的操作和想象活动,唤起学生的因倍意识,自主建构起因数和倍数的意义,那么学生获得的概念必然是生动的、有意义的。
2.解决问题变关注结果为对话生成。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉学生,迫切地寻求结果,还是给学生充分的探究时间,让他们通过独立思考、交流讨论,从而发现问题、解决问题呢?很多成功的教学表明,在教学中为学生营造出一个对话场,在生生、师生多角度、多层面的对话中,能让师生彼此分享经验、沟通思考,生成新的看法。
3.教学宗旨变关注知识为启迪智慧。知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。从知识课堂走向智慧课堂,为学生的智慧成长而教,应成为我们数学教学的倾心追求。怎样通过对因数和倍数内涵的深度挖掘,在教给学生数学知识的同时,更教会他们数学思考的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计因数和倍数这堂课的宗旨所在。
教学目标:
1.通过活动建构,使学生领会因数和倍数的意义;通过独立思考、交流谈论,初步掌握求一个数所有因数的方法。
2.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
3.通过教学,让学生从中感受到数学思考的魅力,体验到数学学习的乐趣。教学准备:
练习纸、学号卡等。
教学重、难点:
掌握求一个数的所有因数的方法,学会有序地进行思考。
教学流程:
一、意义建构
1.用12个同样的小正方形摆一个长方形,可以怎样摆?能不能举一道简单的乘法算式,把你心目中的摆法表示出来?(请一位学生回答)
2.猜猜他可能是怎样摆的?
(根据学生回答依次出现相应的两种摆法,随后隐去第二种)
3.还可以怎样摆?同样用一道乘法算式表示出来。
(再请一位学生回答)
4.他又可能是怎样摆的?
(根据学生回答屏幕显示另外两种摆法,随后隐去第二种)
5.还可以怎样摆?
(请学生回答)
6.能想象出他的摆法吗?
(根据学生回答屏幕显示最后两种摆法,随后隐去第二种)
此时屏幕上出现三种摆法。在三种摆法右侧分别出现三道乘法算式。
7.通过刚才的学习,我们发现,用12个同样的小正方形,可以摆出三种不同的长方形,由此我们还得出三道不一样的乘法算式。以43=12为例,43=12,从数学的角度看,我们可以说4是12的因数,3也是她的因数。反过来,我们还可以说,12是4的倍数,12也是3的倍数。这就是我们今天要研究的因数和倍数。
(板书课题:因数和倍数)
8.结合另外两道乘法算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?
(请同座两个学生相互说一说)
9.为了研究的方便,在研究因数和倍数时,我们所说的数专指不是零的自然数。
[设计理念:因数与倍数这节内容,传统教材是按数学知识的逻辑系统安排的,在除法和整除的基础上,由整除直接演绎推理出来的。这种概念的揭示从抽象到抽象,没有学生经历的过程,学生获得的概念是刻板的、冰冷的。而本环节设计旨在让学生借助表象进行操作和想像活动,自主体验数与形的结合以及其中的因倍关系,进而生成因数和倍数的意义。这种意义的建构是基于学生原有经验之上的,是学生自主操作、积极思考的结果。]
二、方法渗透
1.根据44=16、40016=25这两个算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?
(指名回答)
2.当两个因数相同时,通常只需要说出或写出一个,这是数学上的规定。我们能不能说16是因数,或者说16是倍数?
(组织学生讨论)
3.因数和倍数它们是一种相互依存的关系。
(板书:相互依存)
4.下面我们一块来找一找100的因数有哪些?同学们可以同座两人合作,也可以独立思考。
(教师巡视。并选择一份作业,用实物投影展示出来)
5.对照你们自己找出的100的所有因数,你想对这位同学说些什么?
(根据学生回答,教师相机进行引导、评价)
6.对于刚才几位同学的回答,你们还有没有什么需要补充的或提问的?
7.比较这几种方法,你发现了什么?
8.回顾刚才的过程,你觉得要找出一个数的所有因数,有什么诀窍?
(通过对话、讨论,让学生体会思考的合理性、有序性)
9.当然,如果要找出一个很大数目的所有因数,用这种方法可能会比较麻烦,我们将在今后的学习中进一步来研究。
[设计理念:如何找出100的所有因数,教学中,教师没有急切地认定结果,也没有简单地把方法告诉学生,而是先让学生或同座两人合作,或独立思考。通过多角度、多层面的交流与对话,师生之间彼此分享经验、沟通思考。在解决问题的过程中,学生的思维能力得到了提高,情感、态度、价值观得到了升华。]
三、巩固深化
(课件显示:下面哪些数一定是□□的因数。
1、2、3、4、5、6、7、8、9、10)
1.方框后面藏着个两位数,看谁能很快说出下面10个数中,哪些是它的因数?
(单击一下,出示21)
2.接着出示□4,哪些是它的因数呢?说说你的想法?
3.要使这个数一定有因数2,那么个位上还可以是哪些数字?
4.出示□0。你知道除了1和2外,还有哪些数也是它的因数?
5.最后出示□□。这一次,十位和个位上的数字都看不清了,你还能找到答案吗?
[设计理念:设计这一组变式练习,一方面使学生进一步掌握找一个数的因数的方法,另一方面又巧妙渗透了能被2整除的数的特征,体现了数学学习的综合性、连贯性。]
四、360度的优点
1.我们已经知道了一直角等于90度,一圆周角等于360度。可是你们知道吗?从前,法国人曾将一直角定为100度,这样一圆周角就是400度。但是后来却没有能行得通。这是什么道理呢?一圆周角等于360度又有什么优点呢?
2.我们先来找一找360和400的因数各有多少个?
(分别出示360和400的。所有因数。)
3.原来其中一个重要的原因,就是360的因数比400的因数多,多9个。一圆周角定为360度,当我们需要计算一圆周角的几分之一时,可以[www.kuaihuida.com]在23种情况下得到整度数。
课件显示:
2等分:360/2=180;3等分:360/3=120;
4等分:360/4=90;5等分:360/5=72;
90等分:360/90=4;120等分:360/120=3;
180等分:360/180=2;360等分:360/360=1)
而如果把一圆周角定为400度,那么只有在14种等分情况下才能得到整度数。相比之下,当然360度要方便多了。
[设计理念:为什么法国人将一圆周角定分400度没能行得通?一圆周角定为360度有什么优点?学生通过猜想、比较,了解到这些竟然与因数的多少有关,从中学生真切地感受到数学的有趣、神奇。数学在学生心目中不再是陌生、晦涩的,而是生动有趣的,她就在你我的身边。]
五、游戏中的发现
1.请学生拿出学号卡,在纸上写下你的学号数的所有因数。
2.在这些数中,因数的个数最少的是几?(对1)虽然1是因数个数最少的一个数,但它却又是最受欢迎的一个数,你们知道为什么吗?
3.除了1以外,你觉得还有哪些数比较特别的?
(找2或5号同学。)
4.你这个数特别在哪儿?像这样的数还有哪些?请把学号卡举起来。
(课件显示:只有两个因数的有:2、3、5、7、11)
5.除了这些数外,其余的数各有多少个因数?(对4)你有?(对6)你呢?
6.这些数,它们的因数个数多少不一,各不相同。同学们猜一猜在它们中间因数个数最多的是那一个?你觉得?理由是?你有什么办法可以把这个数尽快地找出来?
7.如果让同学们将这51个数按照它们因数个数的不同,来分一分类,你们准备怎样分?其实不光这51个数,把所有的自然数按照因数个数的不同来分类,都可以分成这样的三类。
8.今天这节课我们就上到这儿,关于因数和倍数,还有许多的知识等着我们去学习,去研究,去探索
9.组织学生分批退场。
(1)请学号数不少于三个因数的同学先退场;
(2)请学号数只有两个因数的同学退场;
(3)请学号数只有一个因数的同学跟我一起离场。
[设计理念:通过寻找自己学号数的所有因数,既使学生进一步熟悉找一个数的因数的方法,又让学生感知到自然数的因数个数各有不同,为后面学习质数与合数埋下伏笔;组织学生分批退场,既检验了学生学习的效果,又营造了一种轻松、愉悦的气氛。正所谓课已毕,趣犹在。]
《因数与倍数》小学教案 篇三
课题:因数和倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报 3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数 3的倍数 5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业:
完成练习二1~4题
只要功夫深,铁杵磨成针。上面就是快回答给大家整理的3篇《因数与倍数》小学教案,希望可以加深您对于写作因数与倍数教案的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。