作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。教学设计应该怎么写才好呢?这里快回答为大家分享了10篇小学六年级数学上册《比的意义》教学设计,希望在比的意义教案的写作这方面对您有一定的启发与帮助。
《比的意义》教案 篇一
一、教学目标
1.知识与技能目标:使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2.过程与方法目标:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。
3.情感态度价值观目标:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。
二、教学重难点
重点:理解方程的意义。
难点:理解方程与等式的异同。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是方程的意义,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
导入:同学们,你们都喜欢玩跷跷板吗?看熊二和光头强也在玩跷跷板,我们一起来看一看,可以他们的体重悬殊太大了,光头强高高的被挂了起来。看吉吉和图图也来了。光头强和吉吉涂涂坐在一边,熊二坐在另一边,怎么样?对呀,跷跷板正好平衡了,那你们用一个算式来表示就是,对,熊二的体重等于光头强+{吉吉+图图的体重,其实在跷跷板中也蕴含着丰富的数学知识,这节课就让我们一起走进数学王国,去探究方程的意义。
【新授】
活动一:
根据翘翘板的这种现象呀,科学家就设计出了天平。看老师面前就有一个天平,天平已经是我们的老朋友了,之前我们认识克的时候就认识了她,那谁来向大家介绍一下这位老朋友呢?请你来介绍,你介绍的可真全面,请坐,天平有两个托盘,中间有一个刻度盘,天平中间有一个指针,天平左右两边物体重量相等的时候,天平就平衡,我们一般是左物右码。
那我们一起来操作一下天平,同学们仔细看,老师先将右盘上放上100克砝码,再在左盘上放上两个50克的砝码,你们发现了什么?对呀,天平平衡了。谁来用一个式子的来表示呢?请你来说,说的非常准确,请坐,50+50=100。
活动二:
那我们一起观察这个算是它有什么特点呢?请你来说目光非常敏锐等号左边和右边相等,这样的式子就是一个等式。接下来再来认真观察,老师将左边两个50克的砝码拿下来,在重新在天平的。左边放上一个杯子,你们发现了什么?对呀,天平平衡了,也就是说杯子的重量是100克,同学们是这样的吗?那老师带往杯子里倒一些水,又出现了什么情况呀?对呀,天平朝向杯子这边倾斜了,也就是说杯子的重量加水的重量大于100克。那我们再向天平右边放个100克的砝码,看一看有什么变化?天平还是朝杯子这边倾斜,那你们能用将这个过程用一个式子来表示一下嘛,请你来说。说的真不错,请坐。杯子加水的重量大于200克,谁还有更好的方法,来做的最端正的同学,请你来说你的小脑袋可真灵活,请坐。对呀,上节课我们已经学过了用字母表示数。我们可以用字母x来表示水的重量,刚刚我们已经称出了杯子的重量是100克,所以用式子来表示就是x+100大于200。同学们,你们都想到这个方法了吗?你们可真棒,那我们继续操作,我们再向右边托盘放100克的砝码,看一看有什么变化呀?来请你来说,说的非常棒,请坐。天平朝向右边托盘倾斜了。那这个过程我没有该用哪个式子来表示呢?对呀,x+100小于300,看来我们刚刚放100克的砝码放过大了,那我们再放一个小一点的试一试。
我们将这100克的砝码换成50克的砝码来试一试。同学们仔细观察,对呀,我们的天平竟然平衡了,那也就是说我没杯子加水的重量等于250克,那我们用算式来表示该如何表示呢?来躲着最端正的同学,请你来说,说的非常棒,请坐x+100=250。同学们可真是太棒了,
活动三:
通过我们的共同探索,和一起操作写出了这么多的方式,我们带来仔细观察这些算式,这些算式之间有哪些共同点和不同点呢?
先独立思考,再小组合作讨论,完成以端正的坐姿来示意老师,看哪个小组的发现又快又好开始。老师看同学们都已经坐端正了,谁来说一说你的发现,请你来说观察的非常敏锐,请坐。有的算式是等式,洋浦的是不等式,那我们再来看一看这等式的两个算式之间他们有什么不同呢?请你来说,这可真是一个了不起的发现,请坐。第二个算式有一个未知数x,而第一个没有,其实像这种含有未知数x的等式就是我们今天所学习的方程。
那是不是所有的等式都是方程呢?对呀,不是。只有含有未知数的等式才是方程,也就是说要判断一个式子是不是方程,我们需要注意哪几点呢?来请你来说,说的非常棒,我们需要有两个条件,一个是含有未知数,二是等式。
同学们,你们都是这样想的吗?那老师这样说你们看对不对?方程是等式,对这样说是正确的,那等式是方程呢?对呀,这样说不正确,因为还需要一个条件,也就是说这个等式里必须含有未知数。
观察一下黑板上这些内容,以上就是本节课所要学习的方程的意义。
【巩固练习】
那我们看一看这道题,老师买了三本练习本,一共花了2.4元,我都没本练习本价格用x来表示,那又该如何列算式?请你来说好,请多3xx等于2.4,我们上节课已经学习了,用字母表示数的时候数字与字母相乘,其中的称号我们可以省略,数字放在前面,所以是3x等于2.4。是方程吗/对呀,是我们一起来看一看符合不符合这两个条件是不是等是,对是等式,而且还有未知数。
【课堂小结】
不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课认识了什么是方程,什么是等式。看来啊本节课上特听讲非常认真,请坐!
【作业布置】
那接下来老师老师给大家布置一个小任务,课下去搜集一下我国古代如何解决类似的问题呢?下节课一起来交流讨论一下。
本节课就先上到这,下课,同学们再见!
尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!
《比的意义》教案 篇二
教学目的
1、知识与能力:使学生进一步理解整除的意义。使学生知道约数、倍数的含义,以及它们之间的相互依存关系。使学生知道研究约数和倍数时所说的数,一般指自然数
2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。
3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。
教学重点:
理解整数、约数和倍数的概念。
教学难点:
整数、约数和倍数的联系。
教学过程:
一、复习
1、师:谁能说说整数的含义?
出示:23÷7=3...26÷5=1.15÷3=524÷2=12
教师:这4个算式中,哪个算式中第一个数能被第二个数整除?为什么前两个算式中的第一个数不能被第二个数整除?
让学生观察算式,说说式中被除数、除数和商各有什么特点?
教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?
教师:a的约数还可以叫做什么?
让学生用两种说法说说:15÷3=5和24÷2=12
教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
(1)被除数和除数必须是整数,而且除数不等于0。
(2)商必须是整数。
(3)商的后面没有余数。
师:以上三个条件,缺一不可。
2、区别“除尽”与“整除”
师:像6÷5=1.2这样的除法,一般说6能被5除尽。
被除数和除数
商
整除
都是整数,除数不等于0
商是整数,而且没有余数
除尽
不一定是整数,除数不等于0
商是有限小数,没有余数
二、新课
1、教学约数和倍数的意义。
在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)
让学生看50页关于约数和倍数。
教师:两个数在什么情况下才能说有约数和倍数关系?(整除)
能单独说一个数是约数或一个数是倍数吗?
“倍数和约数是相互依存的。”是什么意思?
:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。
2、教学例1
(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。
教师:15能被3整除吗?
15是3的什么数?
3是15的什么数?
教师指出:这里所说的数一般是指自然数,不包括0。
(2)“倍数”与“倍”的区别
1、基本练习P51做一做
三、巩固练习
1、独立完成练习十一的1、2、3题。
2、第四题
教师:要判断哪些数是60的约数,只要看那哪些数能整除60。
要判断哪些数是6的倍数,就要看哪些数能被6整除。
比的意义教案教学设计 篇三
教学目标:
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的'基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的辨证唯物主义观点。
教学重难点:
理解比的基本性质,推导化简比的方法正确化简比。
教法:
引导探究
教学过程:
一、导入:
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
二、探究新知:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
板书课题:比的意义
3比2 3:2
2比3 2:3
100比2 100:2
两个数相除又叫两个数的比。
比的各部分名称
15:10=15÷10=3/2
前项比号后项比值
教师重点指导:
(1)关于“比值通常用分数表示,也可以用小数表示,有时也可能是整数”,你怎样理解?
(2)比的后项为什么不能为0?
比分数除法的联系与区别
三.课堂检测:
1、完成教材第44页“做一做”的第1、2题。
2、完成教材第47页练习十一的第1——3题。
四.小结:
谈一谈本节课的收获。
比的意义教案 篇四
教学要求:
1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学重点:
认识正比例关系的意义。
教学难点:
掌握成正比例量的变化规律及其特征。
教学过程:
一、复习铺垫
1.说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2.引入新课。
上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)
二、自主探究:
1.教学例1。
出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:
(1)表里有哪两种数量,这两种数量是怎样变化?
(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?
(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?
引导学生进行讨论,得出:
(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。
(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。
(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)
2.教学例2。
出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的。比值一定)
3.概括正比例的意义。
(1)综合例1、例2的共同点。
提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)
(2)概括正比例关系的意义。
像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。
4.教学例3学生看书自学,小组讨论,集体交流。
(1)数量与时间是不是两种相关联的量?
(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?
(3)判断数量与时间是不是成正比例?
5.完成97页练一练。
三、巩固练习
1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?
2.做练习十一第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。
五、家庭作业
练习十一第2~6题。
比的意义教案 篇五
教学目标:
1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、培养学生概括、归纳的能力。
教学重点:会根据题意列方程。
教学难点:理解方程的含义。
教学过程:
一、教学例1
出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?
学生在本子上写。
指名回答,板书:50+50=100
含有等号的式子叫等式,它表示等号两边的结果是相等的。
二、教学例2
学生自学
要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。
2、小组同学交流四道算式,最后达成统一认识:
X+50>100 X+50=100
X+50<100 X+X=100
根据学生的回答,教师板书这4道算式。
3、把这4道算式分成两类,可以怎样分,先独立思考后再小组
内交流,要说出理由。
学生可能会这样分:
第一种:
X+50>100 X+50=100
X+50<100 X+X=100
第二种:
X+50>100 X+X=100
X+50<100
X+50=100
引导学生理解第一种分法:
你为什么这样分,说说你的想法。
小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。
指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的。等式是方程。
提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”
那X+50>100 、X+50<100为什么不是方程呢?
提问:那等式和方程有什么关系呢,在小组里交流。
方程一定是等式,但等式不一定是方程。
三、完成“试一试”、“练一练”
学生独立完成。
集体订正时围绕“含有未知数的等式”进一步理解方程的含义
四、课堂作业:练习一的1、2、3。
板书: 方程的初步认识
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式是方程。
比的意义教案 篇六
教学内容:
分数的意义、分子、分母、分数单位
教学要求:
1、使学生理解掌握分数、分子、分母的意义和分数单位,进一步学会读写分数。
2、通过分数意义的教学,培养学生分析、综合、抽象、概括能力。
教学重点:
单位1和分数单位
教学准备:
电脑软件、实物投影仪、正方形纸、围棋子若干
教学过程:
一、复习引进
1、出示分数,它们是什么数?
同学们在三年级时已初步认识了分数,那么分数是怎么产生的呢?
(1)把一个苹果平均分给两个同学,每人得多少?
(2)请两组同学量一量课桌的宽是多少厘米?
(3)请一位同学量一量数学书的长是多少厘米?
(得到的结果都不是整数)
在实际生产和生活中,人们在测量和计算时,往往不能得到整数的结果,这时就需要用一种新的数─分数来表示,这样就产生了分数。
什么是分数?分数的'意义是什么呢?这就是我们这节课要学习的内容。
出示课题:分数的意义
二、理解概念:
1、理解单位1的概念
(1)出示一块蛋糕:它可以用1来表示。
(2)出示一个正方形:它可以用1来表示吗?为什么?
(3)出示一条线段:它可以用1表示吗?为什么?
小结:一块蛋糕,一个正方形,一条线段都是一个物体,都可以用1表示。
(4)出示四个苹果:这是几个苹果?可以用1表示吗?为什么?
用圆圈把四个苹果圈起:现在可以用1来表示这些苹果吗?为什么?
(5)把这6只熊猫看作一个整体,用1来表示行吗?为什么?
(6)我们全班同学可以用1表示吗?为什么?一组同学呢?
(7)你能举出一些把许多物体看作一个整体,用1来表示的例子吗?
小结:1不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个1很特殊,我们给它加上引号,把它称为单位1。
说说你是怎么理解单位1的?能举出例子吗?
2、理解分数意义:
(1)把这块蛋糕平均分成2份,每份是它的几分之几?
(2)把正方形纸平均折成4份,并用阴影部分表示出它的三份,用分数表示是多少?
比的意义教案 篇七
教学内容:
书第68-69页例1、例2,试一试、练一练和练习十三的1―5题。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:
理解比的意义。
教学难点:
理解比与分数、除法的关系。
教学准备:
多媒体课件。
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
二、教学例1
(一)、呈现例1:
1、利用旧知进行比较:
(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。
2、“比”的教学:
(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
3、“比”的读写:
(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)
(2)指导学生写:3比2怎么写呢?谁来写一写?
(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项
后项)
(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?
4、比是有序概念
(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?
(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。
(二)、完成试一试
(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
三、教学例2
(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。
1、想一想,我们怎样求两人的速度?
2、2、学生计算答案,汇报填表。
3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)、理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
(三)、认识“比值”、及与“比”的区别:
1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?
2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?
3、你能说出例1中的各个比的比值分别是多少吗?
4、讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的`一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
(四)、“试一试”
1、完成“试一试”:(学生独立完成,指名板演)
2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)
(五)、比、除法和分数的关系
1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)
相互关系区别
比前项比号(:)后项比值
除法
分数
2、比的后项为什么不能是0?
四、巩固练习
1、完成“练一练”的1、2、3小题。
2、判断题。
(1)3/4只能读作四分之三。()
(2)比的后项不能是零。()
(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()
3、完成练习十三的第3、4题。
4、糖水的甜度
(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)
你知道哪一杯水更甜吗?为什么?
(2)(出示第三杯糖水,标出糖4克,水100克。)
你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?
(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?
5、知识介绍:
同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”
五、总结:
今天我们学习了什么?你们有什么收获吗?还有什么问题吗?
六、布置作业:
P72练习十三的1、2、3、5
板书设计
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
2比3记作2∶3分数形式
小学数学《比的意义》教案 篇八
【教材分析】
苏教版国标本小学数学第十册第36例1、“试一试”、“练一练”和练习六相关习题。这部分内容是在学生初步认识分数的基础上教学的,在三年级上册,学生已经学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;在三年级下册,学生有学习了把由若干个物体组成的一个整体平均分成几份,用几分之一、几分之几表示其中的一份或几份。本堂课主要引导学生抽象出单位“1”的概念,概括分数的意义,认识分数单位。例1中首先让学生看图写分数,激活学生对分数的已有认识。然后分两个层次:1、让学生认识到这里分别是把一个物体、一个图形、一个计量单位、一些物体组成的整体平均分的,抽象出单位“1”的概念;2、再让学生认识到分数是把单位“1”平均分成了几份,表示这样的几份?完整的概括出分数的意义。最后让学生认识分数单位的含义。
【教学目标】
1、 使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进
一步理解分数的意义。
2、 使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
【教学重点】理解分数的意义,认识分数单位。
【教学难点】理解、抽象出单位“1”。
【教学准备】课件
【教学过程】
一、导入:
谈话:在三年级,我们曾经分两次认识分数。你能举例说说什么是分数吗?
二、新课
1、教学例1
(1)出示例1组图
提问:你能用分数表示各图中的涂色部分?
(学生独立完成在书上)
追问:你能说说每个分数各表示什么?
(同桌交流后班内汇报)
教师根据学生回答,用课件逐渐展示板书。
提问:第四个图与前三个图有什么不同吗?
引导学生明确:一个饼可以称为一个物体、一个长方形是一个图形、1米是一个计量单位,而第四幅图是把6个圆看作一个整体。
出示2/3
提问:把( )平均分成3份,表示这样2份的数?
学生讨论交流,班内汇报。
猜测:可能是一个物体、一个图形、一个计量单位或许多物体组成的一个整体。
说明:一个物体、一个图形、一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
追问:在这几个图里,分别是把什么看作单位“1”,平均分成了几份?表示这样的几份?
提问:你能试着说说什么是分数吗?
教师引导概括分数意义。
(2)操作:铅笔、硬币、钟面、桃子图案
提问:你能用手中的物品表示2/3吗?你是怎样想的?
学生小组合作用提供的物品表示并交流想法。
【设计意图】学生在概括单位“1”后,通过操作丰富单位“1”的表象,理解单位“1”不同,所表示的意义、数量都不同。
(3)出示练习六(3)
学生先按书上的说法,说说第1题中是把哪个数量看作单位“1”平均分成了几份,三好生有这样的几份;再参照第1题说说后两题中分数的意义。
(4)出示练习六(4)
先引导学生明确单位“1”,再依次出现平均分的点,让学生用分数表示并说说想法。
(5)出示练习六(5)
学生独立完成后交流所填分数有什么不同。
2认识分数单位
(1)谈话:整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:5/8里有5个1/8,5/8的分数单位是1/8,3/7、1/5、1/2呢?
提问:你能说说什么是分数单位吗?
学生讨论交流,教师引导揭示。
【设计意图】联系整数、小数的计数单位,有助于学生正确理解分数单位。
(2)完成“试一试”
学生独立思考,同桌互说后班内交流。
(3)完成“练一练”
学生独立完成,班内交流订正。
(4)完成练习六(1)
同桌读一读,并说说每个分数的分数单位。
提问:每个分数的分母与分数单位有什么关系?
课堂小结:
这节课,我们认识了是什么?生活还有哪些事物能用分数来表示,她们又是分别把谁看作单位“1”。找一找,和同学说一说。
《比的意义》优秀教学设计与反思 篇九
教学目标:
1、理解并掌握比的意义,掌握比的读、写,认识比各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、理解比和除法、分数的关系。
4、向学生渗透转化思想,培养学生抽象、概括能力。
教学重点:
理解比的意义,掌握求比值的方法。
教学难点:
理解比的意义,建立比的概念。
课前准备:
制作教学课件。
教学过程:
一、复习铺垫,导入新课。
1、口答:78= 135= =( )( ) =( )( )
指名说出分数与除法的关系。
2、师:在日常生产和生活中,常常需要把两个数量进行比较。比较的方法我们已经学过两种,即比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法。下面请大家看这个例子(出示P52的例如):一个镜框长5分米,宽3分米。谁能提出关于长和宽的倍数关系的问题?
根据学生提出的问题板书:
长是宽的几倍?53= 宽是长的几分之几?35=
师:刚才,我们用除法来表示两个数或数量之间的关系,也就是两个数相除(板书:两个数相除),有时我们也把这样两个数量的关系换一种说法。这也就是我们今天这堂课要研究的问题比的意义。
板书课题。
二、教学新知,初步感知。
1、揭示比的意义。
师:例如,长是宽的 倍我们可以这样说,长和宽的比是5比3。(板书:长和宽的比是5比3)(学生跟着老师练说)那么,按照这种说法,宽是长的 还可以怎样说?同坐试着说,再指名说。(板书:宽和长的比是3比5)
师:我们再来看一个例子(出示P52的又如,一辆汽车2小时行驶90千米)路程和时间的关系可以用速度(也就是每小时行多少千米)来表示。怎样列式?(学生回答,教师板书:902=45)谁能用比来表示路程和时间的关系?(板书:路程和时间的比是90比2)
引导学生观察板书、归纳比的意义。提问:什么叫做比?(学生可通过或讨论、或看书得出比的意义,教师接着两个数相除后面板书:又叫做两个数的比。)
练一练。
(1)、有5个红球和8个白球,红球和白球个数的比是 比 ,白球和红球个数的比是 比 。
(2)、 一个美术兴趣小组有男生15人, 女生8人, 男生和女生人数的比是 比 。男生和美术兴趣小组总人数的比是 比 。
2、通过自学,掌握比各部分的名称和求比值的方法。
(1)出示自学提纲:
①用数学方法如何写比,如何读呢?
②比的各部分的名称分别叫什么?
③比和除法、分数的关系各是什么?填入表中。
④比的后项为什么不能为零?
(2)学生自学课本或分组讨论。
(3)集体讨论第①个问题并板书:5:3 3:5 90:2
师:比还有一种写法,你知道是怎样写的吗?(教学比的分数形式)
在学生讨论的基础上教师叙述:两个数的比还可以写成分数形式,例如:5:3也可以写成 ,仍读作5比3。请大家把3:5、90:2改写成分数形式。
(4)集体讨论第②个问题并板书:
(5)根据上面式子,指名说说比和除法、分数的关系及求比值的方法。
在学生讨论的基础上出示下面关系表:
名称 联系 区别
比 前项 :比号 后项 比值 一种关系
除法 被除数 除号 除数 商 一种运算
分数 分子 分数线 分母 分数值 一种数
指名说说,比的后项为什么不能是零?
辨析:在亚洲女足锦标赛中, 中国女足健儿努力拚博,夺得了金牌,为祖国争得了荣誉,其中,中国队以1:0战胜了日本队,那么为什么这个比的后项可以是0呢?
师说明:因为各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,不是相除的关系。
问:怎样求比值呢?
学生回答后小结:求比值用比的前项除以后项。比值通常用分数表示,也可以用小数表示,有时也可能是整数。
练习:求比值:4:5 0.8:0.4 :
三、巩固练习,深化认识。
1、完成P53练一练。
2、完成练习十二第1题。
3、完成练习十二第2题。
四、综合练习,提高技能。
1、口答:白兔的只数是黑兔的4倍,
白兔只数与黑兔只数的比是( )
黑兔只数与白兔只数的比是( )
黑兔只数与总只数的比是()
总只数只数与黑兔的比是()
白兔只数与总只数的比是()
总只数与白兔只数的比是()
2、动脑筋根据题目中提供的信息,寻找合适的量,自己提出各种问题,并说说这些量之间的比
小龙今年12岁,是六(1)班学生,该班共有45个学生,小龙爸爸今年39岁,在保险公司上班,每月工资1800元;小明妈妈每月工资1400元,她所在单位有职工28人。
五、全课总结,释疑解惑。
这节课,你学会了那些知识?还有哪些问题需要探讨的吗?
六、作业:完成练习十二第3-5题。
教学反思
比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系。虽然比和除法、分数有着密切联系,但又不完全等同,比更强调的是量与量之间的倍比关系的直接描述,有时并不关注具体比值是多少,而除法、分数更多的是强调两个量之间的一种运算关系,通常也会同事关注运算的结果。此外,我们可以用比同事表示两个、三个乃至更多的量之间的倍比关系,而除法、分数一般只能表示两个量之间的倍比关系。通过这节课的教学,学生能够理解比的意义,知道比与分数、除法的关系,但是对它们之间的区别还不够清楚。
比的意义教案 篇十
本课教学目标:
1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。
教学重点:比与除法、分数的关系
教学难点:理解比的意义
教具准备:多媒体课件
教学过程:
一、谈话启发,揭示课题
师:今天很高兴能在这和大家一起学习,我们班的同学都到齐了,看看男生有几人呢?(29人),女生有几人?(25人)在日常的工作和生活中,我们常常把两个数量进行比较。现在你能不能根据我们班男生和女生的人数,提出数学问题,并会用以前学过的什么方法进行比较?
启发学生提问题,解答后教师板书。
比差关系:用减法29-25=4(人)
比倍关系:用除法29÷25=
25÷29=
师:从男生和女生的比较中可以知道,比较数量的意义和方法有两种:一种是求一个数量比另一个数量多多少(比差关系)用减法,另一种是求一个数量是另一个数量的几倍或几分之几(比倍关系)用除法。今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法——比。
2、板书课题 (出示教学目标)
二、新知探究
l.教学比的意义。
师问:29÷25是哪个量和哪个量比较?(男生人数和女生人数比较)
师述:用新的一种数学比较方法,求男生人数是女生人数的几倍,又可以说成男生人数和女生人数的比是29比25。(板书:男生人数和女生人数的比是29比25)
扶放启发:请同学们想一想,仿上例(指29÷25),那么25÷29又可以怎么说呢?
(生说后师板书:女生人数和男生人数的比是25比29)
小结:从求我班男生人数和女生人数的倍比关系知道:谁是谁的几倍或几分之几,又可以说成谁和谁的比。应注意的是:两个数量进行比较要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。(如29比25是男生人数和女生人数的比,25比29是女生人数和男生人数的比。)
师:同学们真聪明,很快就学会了用“除法”和“比”的方法对我们班的男生和女生人数进行了比较,请同学们再看下面一个例子。
(投影出示)
“一辆汽车2小时行驶100千米。每小时行驶多少千米?”
教师提出如下几个问题启发学生思考:
(投影出示)
(1)求汽车行驶的。速度应怎样计算?
[用除法计算:100÷2=50(千米/小时)]
(2)题中的100千米是汽车行驶的什么?2小时呢?(路程、时间)
(3)汽车的速度又可以说成哪个量和哪个量的比,是几比几?
学生回答后教师板书:路程和时间的比是100比2。
引导学生总结出比的意义:
师启发:从上面两个例子可以看出,比较两个数量的倍比关系可以用什么方法?(用除法)又可以用什么方法?(比的方法)那么表示两个数的相除关系又可以怎样说呢?板书:
两个数相除又叫做两个数的比。(完善板书:比的意义)
接着帮助学生深化理解比的意义(提出如下问题启发):
(l)两个数的比是表示两个数之间的什么关系?(相除关系)
学生回答后教师在“相除”两字下面点上着重号,然后让学生齐读两遍。
(2)上面两例,它们的解法有什么共同点?(都用除法,又可以说成几比几)
(3)两个例中的各个比有什么不同点?(第一个例子中的比是同类量的比,第二个例子中的比是不同类量的比。不同类量比,得到的是一种新的量,如路程和时间的比表示的意义是速度。)
2.教学比的读写法、各部分名称、求比值的方法及比同除法的关系。
(一)课件出示自学提纲。
1、比的读、写法2、比的各部分的名称分别叫什么??3、怎样求一个比的比值?
4、比值可以怎样表示 ??5、比和比值有什么联系与区别?
(二)各小组根据提纲自学。
教师巡回查看,了解学生学习中的疑难,以便有目的的开展教学。
(三)逐步汇报并举例。
1、两个数相除,又叫做两个数的比。
2、“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。
3、15比10 记作15∶10 10比15 记作10∶15
4、比的前项除以后项所得的商,叫做比值。
例如:3 ∶ 2= 3÷2 =
引导学生根据比值的定义,弄清比值是一个数。(通常用分数表示,也可以用小数表示,有时也可能是整数)。
5、理解比和比值的联系和区别。
海纳百川,有容乃大。快回答为大家整理的10篇小学六年级数学上册《比的意义》教学设计到这里就结束了,希望可以帮助您更好的写作比的意义教案。