1. 主页 > 知识大全 >

数学教学论文(优秀3篇)(数学教学论文优秀7篇)

在日常学习、工作生活中,大家都尝试过写论文吧,论文是学术界进行成果交流的工具。你所见过的论文是什么样的呢?这里的3篇数学教学论文是快回答小编为您分享的数学教学论文发表的相关范文,欢迎查看参考。

数学课堂教学论文 篇一

初中的学生大部分学习自觉性较差,要想普遍地培养他们课外坚持自学的习惯是不容易的,所以课堂自然成为他们用来学习掌握知识的主要场所。而渗透着对教学内容的理解和对教学目标明确的教师的课堂语言,则是他们定向思维的主要导向。因此教师的课堂语言必须具有高度的知识性,即在每一节课都能让学生吸收到不同程度的新养分。同时随着现代学生的知识面的加宽,以及学科内容的相互渗透,课堂上的内容往往会引起他们对跨学科或课外知识的联想,并在课堂上向教师质疑。比如数学教学中会涉及物理、化学、地理、生物等问题,因此教师不仅需要对专业知识进行不断深入的钻研和理解,还需要不断学习掌握课外新知识,以提高自身的素质修养,让学生感受到你那圈“智慧光环”,认真而力求准确地应付类似的每一个问题,这样不仅树立起了形象,而且让学生觉得上这节课同时可以学到课外的东西,既加强对45分钟课堂的兴趣,又提高了教师的教学效果。

课堂教学是知识内容和其语言形式的统一表现,知识的科学性决定了语言的科学性,所以科学性是各科教学课堂语言所具有的根本属性,而数学教学语言的科学性又有自己独特的内涵。斯托利亚尔指出:“数学教学是数学思维的教学”,因此数学教师的语言要在有效的培养学生的思维能力上下功夫。长期以来,由于受数学的所谓“逻辑严谨性”的影响,教师在教学中偏重逻辑演绎,误以为“精确、严谨,符合逻辑要求”的语言就是唯一科学性的数学教学语言。实际上数学教学语言的科学性应针对学生的特点,既要讲究严谨的逻辑演绎,又要适时的穿插能引导学生进行联想、想象、猜想、类比、归纳及洞察领悟等活动的非逻辑的语言,从而使学生全面的认识和理解数学,积极主动的去发现数学和创造数学。

2课堂语言要形象生动,风趣幽默

数学尽管具有高度的抽象性和严密的逻辑性,但其构成内容——空间形式及其数量关系却以一定的“形”存在着,在数学教学中,教师应把数学内容及其形象融为一体,用形象化的评价语言去解释抽象的数学概念,以驱动学生的数学想象。通过恰当的生动比喻、通俗的语言,使深奥的知识明朗化,用自己深厚的文化底蕴教给学生丰富的数学素养,以便引起学生对学习数学的兴趣及加深对知识的理解、记忆,以促进学生抽象思维能力的发展,同时获得一定的教学效果。在实际教学中,我们面对的大部分中学生都比较好动,对于每天一堂接一堂的45分钟的课而言,可能是一种难耐的煎熬,影响他们的学习效率。科学证明:人在一种心情愉悦的状态下效率是最高的。针对这种情况,教师便只有正确驾驭好课堂语言,尽量用生动有趣、幽默的语言来弥补教学内容本身的呆板、枯燥,使学生从原以为无趣的课堂中得到意想不到的享受和乐趣。风趣、幽默的课堂语言不仅可以激活课堂气氛,调节学生的情绪,还可以拉近师生的关系,有利于师生情感的沟通,有利于集中学生的注意力和加强对知识的理解。但是课堂教学的幽默应和教师深刻的见解、新鲜的知识结伴而行,应与无聊的耍贫嘴区分开,不能人为的穿插一些与教学无关的笑料,更不能滥用幽默去讽刺、挖苦学生,这样就起到极大的负面影响,引起学生的反感。所以课堂语言的趣味性在实际运用中要讲究一个“度”,这样才能给学生以美的享受以及获得知识的愉悦。

3课堂语言要具有激励性

现在的初中生在性格和心理上发育都还不健全,都需要教师点点滴滴的培养和引导,因此教师在课堂45分钟的时间内要充分发挥语言的功能,特别是通过激励性的语言对学生进行评价。不失时机地给不同层次的学生以充分的肯定、鼓励和赞扬,使学生在心理上获得自尊、自信和成功的体验,激励学生的学习动机,诱发其学习兴趣,帮助学生认识自我,建立自我。那么,如何实施激励性评价呢?我认为:只有教师的口头语言和体态语言有机结合,才能发挥激励性评价的作用,才能关注学生的个性差异,保护学生的自尊心和自信心,才能激励学生的学习热情,促进学生的全面发展。例如:语言和手势相结合能够帮助把话说得更加明确,更加有力,还能帮助增加说话的形象性,强化说话的感彩,增强语言的表现力和感染力,更能让学生感到亲切。例如教师在提出问题让学生回答时,学生对自己的答案感到不自信时,就马上走到他的面前,用手拍拍他的肩膀或用手抚摸他的头说“没关系,大胆的说,你很聪明,这个问题一定难不倒你。”这样评价,既充分尊重了他的意见,又保护了他的自尊心,还培养了他自信的个性品质,更能使他感到亲切,把师生关系定位在平等、民主的基础上,激励他自主探索、勇于创新的兴趣,对全体学生来说也是一种鼓励。学生只有在宽松、愉悦、不断获得鼓励的环境之中,思维才能变得活跃,解决问题才会标新立异。语言还可以与眼神相结合,眼神的变化,可传递无声的信息,维系着双方思维的感知通道。例如,教学中如果遇到内容的不同叙述方式,问题的不同解答策略,应用的方法多样化等问题。教师就应提出富有挑战性的问题:“你想知道它的答案吗?你想怎样解决这个问题?”并同时用眼神不时的对全体学生扫描说:“老师相信你们能自己想出办法来,请试一试!”这样使每位学生都感到自己是教师的“注意中心”,而不是“被冷落的人”,让学生在亲历中感悟解决问题方法的多样化,促使学生有更大兴趣去探求新知的奥秘。同时,教师可以用严厉和警告的目光去批评课堂中的违纪学生,同大声训斥相比,这种无声的批评学生更容易接受,且不影响大部分学生的注意力。

另外,语言也可以与表情相结合。人的面部表情是人的情绪体验的外在表现,它蕴含着大量的情感交流信息。在课堂上学生都喜欢教师面带微笑地面对他们,即使他们在课堂上表现得不是很出色时,教师微笑着对学生进行激励或鼓励,更容易引起学生的共鸣,促使学生热爱学习,树立学习的信心。教学中对学生激励性的语言要具有真情实感,让学生真正体验到成功之乐,可以激励他们在原有的基础上有所进步,同时也可以满足他们的心理需求。然而,激励性的语言也要把握一个度,应根据学生的差异性,问题的难易程度等科学地进行激励,不能对于任何学生回答了任何一个极为简单的问题就给予一些“隆重”的夸奖。名义上是进行赏识教育、鼓励教育,可实际上这种缺乏深层次指导的表扬学生会听腻,也表现了教师的虚伪,根本起不到任何激励的作用。

除此之外,学生学习不仅要学习一定的知识和技能,还要探索生命的价值意义,教师在教学中,应根据本节课所学的内容适时恰当穿插一些对学生进行思想教育的语言,帮助学生树立正确的人生观、价值观,教育学生“要成材先成人”的道理。作为一个合格的教师不仅要教给学生科学文化知识,还要发挥语言的功能做好育人这一职责。

总之,教师的课堂教学语言是实施新课、新理念的重要手段,它既体现了教师的教学能力,又和教学效果的好坏紧密相连。数学教师应该按照素质教育的要求,在教学实践中不断探索、不断总结、不断完善自己的教学语言,从而更好地促进教学的改革,以提高教学质量和效率。

数学课堂教学论文 篇二

关键词:口头语言体态语言实验语言板书语言媒体语言

在新课标的推行及进入全面实施素质教育、培养学生创新能力的阶段,实施素质教育、培养学生的创新能力的主渠道是课堂教学,而在课堂教学中,老师作为教学的最重要手段无疑是语言。

语言是思维的外衣,是交流思想的工具,是表达内容的形式。对老师来讲,语言是从事课堂教学的起码条件,是完成教育教学任务的重要手段,是最重要的基本素质之一,教学是一门艺术,老师要充分运用自己的语言使得课堂教学显得轻松愉快又引人入胜,这样才能增强教育教学效果,提高教育质量。

课堂教学的语言可以分为以下五种:

一、口头语言

口头语言是人类之间交流、传递信息的最主要的工具。口头语言也是老师在课堂中最常用的授课方式。口头语言相对其它语言来说最大的特点的是它的时间和空间的灵活性强,通过口头语言的,老师可以将知识和情感完整和准确地传递给学生,同时还可以利用语言引导和开发学生思维并培养学生的能力;缺点是时间的延续性差。所以,老师要充分掌握口头语言的特点,趋利避害,老师的口头语言应注意科学性、艺术性、趣味性,做到准确、精练、生动、清晰,力求层次清楚,逻辑严密,形象生动,富有感染力,能把深奥的道理形象化,抽象的概念具体任务化,枯燥的问题有趣化。这在于

⑴准确精练的语言能培养学生严密的逻辑性。初中学生思维活跃,但注意的持久性差,抽象思维发展不够。口头语言和文字不同,时间延续性差,因此老师在讲课时最忌语言拖沓、冗长、繁琐复杂,否则学生就很难完整地记忆和理解。老师口头语言应该简短精练、富有层次,不拖泥带水、重复啰嗦。同时,口头语言的灵活性强,所以有些老师不免有些随便,但学生很难将整节课的老师所以有话都听完记住,如果学生刚好听到和记住“随便”的话而漏过正确的内容,会给学生的理解造成很大的影响,老师的口头语言应该强调严密准确和逻辑性。例如,对于同类项的概念如老师说字母与次数相同的项是同类项,学生就会造成“a2b与ab2是同类项”的现象。对于学生回答中的语言不严密的地方,老师也应该及时的予以纠正和指出,默移潜化中让学生形成良好的逻辑思维。

⑵风趣的语言活跃课堂气氛,激发学生的求和欲。“兴趣是最好的老师”,要使学生对所教的学科产生兴趣,首先要使学生对你说的话产生兴趣,而老师幽默风趣的语言是最容易激起学生兴趣的工具之一。学生每天要上七八节课,对不断“重复”的40分钟总觉得枯燥无味,而且连续的高强度的脑力劳动也使学生的的大脑很难始终保持兴奋状态,这时老师就可以利用口头语言灵活性强的特点,在恰当的时机和内容用幽默风趣的语言打破课堂的沉闷、活跃气氛,起到调节学生情绪的作用,将会有事半功倍的收获。如在上“口头语言有理数的分类”时,我给学生设计了这么一个问题“请把下面的小朋友(数1,2,3,,0,-1,-2,1/2,22/7,-1/3,-5/8,4.5,-1.5)分别带回各自的家(正整数,负整数,零,正分数,负分数)”;接着,又提出问题"它们的家都在路边,现在由于公路改造,只能留两间房子,请你把长得像的小朋友安排在同一间房子里";最后,当“零”自己孤零零地站在屋外时,我有提出:怎么办,它站在外面会被大灰狼吃掉的”此时,学生们马上争先恐后地发表自己的看法,课后,学生纷纷表示这是他们读书以来最爱的一节课。由此可见,枯燥的书面语言,如果能用简明幽默的语言描述出来,还可收到强化记忆和理解的功效。

⑶亲切和蔼的语言能增进师生感情。教学是双边活动,师生在课堂中不单是简单的知识授受关系,也是一个情感的传递过程。尤其在新课改中,这一点更得到了充分的体现。新课改的课程要求教师走下千百年以来”师道尊严”的神坛,与一个合作者,参与者的身份与学生一起做一做,练一练,与学生进行平等对话。那么,要想取得很好的教学效果,必须建立良好的师生关系,有不少的学生就是因为喜欢某位教师然后才喜欢上该门学科的。课堂上老师亲切、和蔼的语言能增进师生感情,沟通师生心灵,使学生热爱你和你所教的学科,产生良好的效果。亲切和蔼的语言还可以给学生足够的信心参与到教学中来,很难想象一位从来不苟言笑、语言生硬的老师能让学生大胆的进行质疑和回答。

二、体态语言

体态语言是指通过人的面部表情和手脚等活动来表现个人情感的身体动作。教学如果能正确运用体态语言可以为老师控制和调节课堂气氛节奏,增强教学效果,还可以促进师生之间、学生与科学间的情感交流。

⑴表情语言心理学家发现,当人们面对面进行交谈时,所获得的信息有很大一部分是从对方交谈时的表情获得的。所以老师在课堂中应恰当利用表情来帮助教学,会起到出神入化的作用。如课堂上有学生开小差,一个严肃的眼神使他迅速改正;学生回答对问题,一个赞许的目光或一个会心的微笑都会使他得到莫大的鼓励。学生在认真听课时,一般都会盯住老师的脸,如果一位教师总是一种表情,就会使学生的注意中心由于缺乏变化而容易分神。老师的在讲课中随着知识讲述而起伏变化的表情,还可以还是学生充分感受到知识的人性本质,避免知识的机械性。如讲述一位科学家的成就时,一个崇仰、神往的表情胜过任何的语言陈述。

⑵手势语言不知大家注意到没有,凡是做老师这一行的人,说话时特别喜欢打手势,其实这是一个职业习惯。一般来说,老师在课堂都喜欢使用手势语言,因为手势动作和表情一样,都是老师个人情感的外在表现,能使满堂生辉,增强教学效果。手势有时还可起到口头语言无法取代的作用,促进学生的对知识的理解和记忆。

三、实验语言

实验在验证数学知识的权威性、有效性方面是其它的语言无法比拟的。很多数学知识如果只是单纯从课本和老师的口中说出来,学生经常不容易理解,也不容易信服,通过实验语言却可以无声胜有声。

⑴实验语言是数学课堂中培养学生科学素质的重要工具。按照素质教育和创新教育的要求,我们将不单要求学生机械的记住课本上的知识,更要培养学生形成比较全面的科学素质和创新思维,使用实验语言是不可或缺的一个手段。初中生的一个心理特点是特别喜欢亲自动手做一做、试一试,实验就是吸引学生的一个好方法,如等腰三角形两个底角相等,轴对称图形的性质等知识,若能运用好实验语言还可以让学生感受发现和创造知识的艰辛和快乐,使学生由感知兴趣提高到探究兴趣和创新兴趣。通过实验语言,我们可以让学生走完知识发现、形成、拓展(质疑、假设、验证、结论、运用)的整个过程,让学生形成正确完整的科学方法。而且数学的实验和科学典故、生活实际联系十分密切,通过实验语言我们可以让学生感觉到科学就在我们身边,就是我们平常生活经验的提炼,避免科学的给人哪种冷冰冰的感觉,使学生感受到知识本身的人文性、以人为本特点,从而产生科学情感和科学思想。

⑵实验语言是对学生各种感官的充分训练。要真正观察好一个实验,就要求学生充分集中精力,发挥动手、动脑等各方面的能力,在观察中分清主次,把握住观察的重点,训练学生在观察事物时对注意中心调整和运用能力。

⑶实验语言是学生提高动手能力和运用、创造知识能力的最好训练。新教育要求全面提高学生的各种素质,让学生在学习中训练他们的实践能力又是以前教育中最薄弱的环节。如果我们运用好实验,让学生亲自动手做和设计实验去发现问题、解决问题,就可以使学生的动手能力和将理论运用到实践中的最好方式;再进行适当的引导,让学生从实验中得出结论和寻找规律,更可使学生完成了从实践中提炼理论的更高层次。同时这种让学生自己在动手中所形成的知识要比课本和老师讲述要真实和牢固得多。

四、板书语言

板书不是讲授内容课本知识的重复,而是对教学内容的提炼和概括,是画龙点睛的启示。板书语言受空间限制较大,但时间延续性、对重点内容突出性强,老师的板书应做到计划性、启发性、规范性。

⑴板书的计划性要求老师事先要吃透教材,将学生最容易忘记、混淆的内容找出来,然后有针对性进行板书设计,让学生更清晰地把握知识的重点和理解的要点。板书的先后顺序还能使学生看到知识形成、发生、发展的过程,从中看到思路和方法。而通过板书的位置设计还可以让学生看到知识点间的联系和不同,把握到知识的脉络框架。

⑵板书的启发性板书的空间限制性强,老师不可能也不应该将所有的内容都进行板书,所以对板书一定要强调其的启发性,利用几个简短句子甚至一个大的问号或文字所加几个点,将学生的心中的疑问和好奇心吊起来、引出来,启发学生的思考、引导学生的探究,帮助学生去探究发现知识,促使学生形成积极思维的习惯。

⑶板书的规范性板书的时间的延续性强,不象口头语言过了就过了,它会留在黑板上,所以板书语言的规范性、严密性的要求都更高。统一风格的规范性板书可以让学生更容易把握知识的重点和记忆的规律,形成良好记忆和思维习惯。一个规范、完整的板书设计本身就是一种美,还体现出老师个人对艺术和美的理解和表现,坚持下来可以薰陶、培养学生的审美观点,使学生自觉地鉴别美、追求美和创造美。

五、媒体语言

现代科技的发展,为丰富教学活动的形式带来了良好的契机,优化组合多种电教媒体,不但可展示内容中的细节和动态变化过程,激发学生多种感官的协调活动,而且可以节省活动的时间和拓宽活动的宽间,利用多媒体教学,更能把具体和抽象结合。例如,在研究直线和圆的位置关系中,可以用多媒体电脑演示直线和圆的相对运动,从而揭示直线和圆的三种位置关系。又如,在轴对称和轴对称图形的研究中,利用电脑显示ABC和A’B’C’及直线L,再通过动画演示其折叠过程,从而引导学生分析,归纳出轴对称的定义,并指出对称点、对称轴、对称线段等概念,使学生学得有趣,学得轻松。多媒体的动感,给学生留下深刻的印象,多媒体的直观可以使知识具体化形象化,因此,能促使形象思维和抽象思维的相结合,减少学生掌握抽象问题的困难,提高他们学习的兴趣和积极性,帮助他们更容易地由感性认识上升到理性认识。

数学教学论文范文 篇三

传统教育的弊端告诫我们:教育应以学生为本。面对当今新时期的青少年,服务于这样一种充满生气、有真挚情感、有更大可塑性的学习活动主体,教师决不可以越俎代庖,以知识的讲授替代主体的活动。情境教学就是把学生的主动参与具体化在优化的情境中产生动机、充分感受、主动探究。如在复习函数这节课时,教师可以创设以下的教学情境:

案例:“我”在某市购物,甲商店提出的优惠销售方法是所有商品按九五折销售,而乙商店提出的优惠方法是凡一次购满500元可领取九折贵宾卡。请同学们帮老师出出主意,“我”究竟该到哪家商店购物得到的优惠更多?问题提出后,学生们十分感兴趣,纷纷议论,连平时数学成绩较差的学生也跃跃欲试。学生们学习的主动性很好地被调动了起来。活势形成,学生们在不知不觉中运用了分类讨论的思想方法。

曾有人说:“数学是思维的体操”。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发。因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问、幽默,还是欣喜、竞争,都应考虑活动的启发性,孔子曰:“不愤不启,不悱不发”,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。

二、强化感受性:

情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题有关的情境中。心理学研究表明:“认知矛盾时动机的根源。”课堂上,教师创设认知不协调的问题情境,以激起学生研究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体、新颖有趣、有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对一致,更不能运用不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。

案例:在对“等腰三角形的判定”进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:

在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下了一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形重新画出来?学生先画出残余图形并思索着如何画出被墨水涂没的部分。各种画法出现了,有的学生是先量出∠C的度数,再以BC为一边,B点为顶点作∠B=∠C,B与C的边相交得顶点A;也有的是取BC中点D,过D点作BC的垂线,与∠C的一边相交得顶点A,这些画法的正确性要用“判定定理”来判定,而这正是要学的课题。于是教师便抓住“所画的三角形一定是等腰三角形吗?”引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即“ABC中,若∠B=∠C,则AB=AC”。这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思考证明方法。

除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用。”

三、着眼发展性:

数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。

案例:在学习完了平行四边形判定定理之后,如何进一步运用这些定理去判定一个四边形是否为平行四边形的习题课上.我先带领学生回顾平行四边形的定义以及四条判定定理:

1、平行四边形定义:两组对边分别平行的四边形是平行四边形。

2、平行四边形判定定理:

(1)两组对边分别相等的四边形是平行四边形。

(2)对角线相互平分的四边形是平行四边形。

(3)两组对角分别相等的四边形是平行四边形。

(4)一组对边平行且相等的四边形是平行四边形。

分析从这五条判定方法结构来看,平行四边形定义和前三条判定定理的条件较单一,或相等、或平行,而第四条判定定理是相等与平行二者兼有,如果将它看作是定义和判定(1)中各取条件的一部分而得出的话,那么从定义和前三条判定定理中每两个取其中部分条件是否都能构成平行四边形的判定方法呢?这样我创设了情境,根据对第四条判定定理的剖析,使学生用类比的方法提出了猜想:

1.一组对边平行且另一组对边相等的四边形是平行四边形。

2.一组对边平行且一组对角相等的四边形是平行四边形。

3.一组对边平行且对角线交点平分某一条对角线的四边形是平行四边形。

4.一组对边相等且对角线交点平分某一条对角线的四边形是平行四边形。

5.一组对边相等且一组对角相等的四边形是平行四边形。

6.一组对角相等且连该两顶点的对角线平分另一对角线的四边形是平行四边形。

7.一组对角相等且连该两顶点的对角线被另一对角线平分的四边形是平行四边形。

在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的5种判定方法去一一验证这七条猜想结论的正确性。

经过全体师生一齐分析验证,最终得出结论:七条猜想中有四条猜想是错误的,另外三个正确猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。

四、渗透教育性:

教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现。法国著名数学家包罗•朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。

教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学

案例:圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过利用经验数据π修正值,例如古埃及人和古巴比伦人分别得到π=3.1605和π=3.125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外接正多边形来求圆周率π的近似值,得到当时关于π的最好估值约为:3.1409<π<3.1429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3.141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3.141024<π<3.142704。后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在3.1415926与3.1415927之间。求出了准确到七位小数π的值。我国的这一精确度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔•卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明-------火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界纪录”,祖冲之计算出的圆周率就是其中的一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新长征中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。

为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,我还进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止。例如1610年德国人路多夫根据古典方法,用262边形计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在它的墓碑上。至今圆周率被德国人称为“路多夫数”。1873年英国的向客斯计算π到707位小数,1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重新算一次。他从1944年5月到1945年5月用了一整年的时间来做这项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。

五、贯穿实践性:

情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。

案例:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的“固着点”,但由于它们与“三角形内角和定理”之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境:首先,在回顾三角形概念的基础上,提出:“三角形的三个内角会不会存在某种关系呢?”这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向“三个内角的和是否有一定的规律?”我适时地提出:“请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。”经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:“由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?”学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出“三角形的三个内角之和为180°”的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:“观察拼接图形,从中能得到什么启示?”学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题:

将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。这题是一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。

创设情境教学的主要方式

一,创设应用性情境,引导学生自己发现数学命题(公理、定理、性质、公式)

案例1在“均值不等式”一节的教学中,可设计如下两个实际应用情境,引导学生从中发现关于均值不等式的定理及其推论.

①某商店在节前进行商品降价酬宾销售活动,拟分两次降价.有三种降价方案:甲方案是第一次打p折销售,第二次打q折销售;乙方案是第一次打q折销售,第二次找p折销售;丙方案是两次都打(p+q)/2折销售.请问:哪一种方案降价较多?

②今有一台天平两臂之长略有差异,其他均精确.有人要用它称量物体的重量,只须将物体放在左、右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量.你认为这种做法对不对?如果不对的话,你能否找到一种用这台天平称量物体重量的正确方法?

学生通过审题、分析、讨论,对于情境①,大都能归结为比较pq与((p+q)/2)2大小的问题,进而用特殊值法猜测出pq≤((p+q)/2)2,即可得p2+q2≥2pq.对于情境②,可安排一名学生上台讲述:设物体真实重量为G,天平两臂长分别为l1、l2,两次称量结果分别为a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,两式相乘,得G2=ab,由情境①的结论知ab≤((a+b)/2)2,即得(a+b)/2≥,从而回答了实际问题.此时,给出均值不等式的两个定理,已是水到渠成,其证明过程完全可以由学生自己完成.

以上两个应用情境,一个是经济生活中的情境,一个是物理中的情境,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境下,再注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学.

二,创设趣味性情境,引发学生自主学习的兴趣

案例2在“等比数列”一节的教学时,可创设如下有趣的情境引入等比数列的概念:

阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当它追到1里处时,乌龟前进了1/10里,当他追到1/10里,乌龟前进了1/100里;当他追到1/100里时,乌龟又前进了1/1000里……

①分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;

②阿基里斯能否追上乌龟?

让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,很快就进入了主动学习的状态.

三,创设开放性情境,引导学生积极思考

案例3直线y=2x+m与抛物线y=x2相交于A、B两点,________,求直线AB的方程.(需要补充恰当的条件,使直线方程得以确定)

此题一出示,学生的思维便很活跃,补充的条件形形.例如:

①|AB|=;②若O为原点,∠AOB=90°;

③AB中点的纵坐标为6;④AB过抛物线的焦点F.

涉及到的知识有韦达定理、弦长公式、中点坐标公式、抛物线的焦点坐标,两直线相互垂直的充要条件等等,学生实实在在地进入了“状态”.

四,创设直观性图形情境,引导学生深刻理解数学概念

案例4“充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为结论B,给充分不必要条件、充分必要条件、必要不充分条件、既不充分又不必要条件以十分贴切、形象的诠释,则使学生兴趣盎然,对“充要条件”的概念理解得入木三分.

五,创设新异悬念情境,引导学生自主探究

案例5在“抛物线及其标准方程”一节的教学中,引出抛物线定义“平面上与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”之后,设置这样的问题情境:初中已学过的一元二次函数的图象就是抛物线,而今定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在的联系吗?

此问题问得新奇,问题的结论应该是肯定的,而课本中又无解释,这自然会引起学生探索其中奥秘的欲望.此时,教师注意点拨:我们应该由y=x2入手推导出曲线上的动点到某定点和某定直线的距离相等,即可导出形如动点P(x,y)到定点F(x0,y0)的距离等于动点P(x,y)到定直线l的距离.大家试试看!学生纷纷动笔变形、拚凑,教师巡视后可安排一学生板演并进行讲述:

x2=y

x2+y2=y+y2

x2+y2-(1/2)y=y2+(1/2)y

x2+(y-1/4)2=(y+1/4)2

=|y+14|.

它表示平面上动点P(x,y)到定点F(0,1/4)的距离正好等于它到直线y=-1/4的距离,完全符合现在的定义.

这个教学环节对训练学生的自主探究能力,无疑是非常珍贵的.

六,创设疑惑陷阱情境,引导学生主动参与讨论

案例6双曲线x2/25-y2/144=1上一点P到右焦点的距离是5,则下面结论正确的是().

A.P到左焦点的距离为8

B.P到左焦点的距离为15

C.P到左焦点的距离不确定

D.这样的点P不存在

教学时,根据学生平时练习的反馈信息,有意识地出示如下两种错误解法:

错解1.设双曲线的左、右焦点分别为F1、F2,由双曲线的定义得

|PF1|-|PF2|=±10.

|PF2|=5,

|PF1|=|PF2|+10=15,故正确的结论为B.

错解2.设P(x0,y0)为双曲线右支上一点,则

|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,

|PF1|=ex0+a=15,故正确结论为B.

然后引导学生进行讨论辨析:若|PF2|=5,|PF1|=15,则|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,这与三角形两边之和大于第三边矛盾,可见这样的点P是不存在的.因此,正确的结论应为D.

进行上述引导,让学生比较定义,找出了产生错误的在原因即是忽视了双曲线定义中的限制条件,所以除了考虑条件||PF1|-|PF2||=2a,还要注意条件a<c和|PF1|+|PF2|≥|F1F2|.

通过上述问题的辨析,不仅使学生从“陷阱”中跳出来,增强了防御“陷阱”的经验,更主要地是能使学生参与讨论,在讨论中自觉地辨析正误,取得学习的主动权.

总之,切实掌握好创设情境教学的原则、重视创设情境教学过程的特性,合理应用创设情境教学的方式,充分重视“情境教学”在课堂教学中的作用,通过精心设计问题情境,不断激发学习动机,使学生经常处于“愤悱”的状态中,给学生提供学习的目标和思维的空间,学生自主学习才能真正成为可能.在日常的教学工作中,不忘经常创设数学情境,引导学生自主学习,动机、兴趣、情感、意志、性格等非智力因素起着关键的作用.把智力因素与非智力因素有机地结合起来,充分调动学生认知的、心理的、生理的、情感的、行为的、价值的等方面的因素,让学生进入一种全新的情境境界,学生自主学习才能达到比较好的效果.这就需要在课堂教学中,做到师生融洽,感情交流,充分尊重学生人格,关心学生的发展,营造一个民主、平等、和谐的氛围,在认知和情意两个领域的有机结合上,促进学生的全面发展.内容提要:本文着重阐述了中学数学素质教学中的情境教学的创设情境的五个原则,创设情境教学过程五个方面的特性,创设情境教学的七种主要方式,并通过大量的案例展示分析,揭示了中学数学素质教学中的情境教学的意义。

关键词:创设情境教学原则特性方式案例

课堂教学是实施素质教学的主阵地,提高学生的素质是课堂教学的重要内容,怎样将“应试教育”向“素质教育”转轨,怎样变单纯的“知识输入”为“能力培养、智力开发”,如何大面积提高中学的数学教学质量,这是摆在我们广大数学教师面前的一个重大课题。在众多教学改革的原则中,主体性是素质教育的核心和灵魂.在教学中要真正体现学生的主体性,就必须使认知过程是一个再创造的过程,使学生在自觉、主动、深层次的参与过程中,实现发现、理解、创造与应用,在学习中学会学习.使学生产生明显的意识倾向和情感共鸣,乃是主体参与的条件和关键.

参考文献:

1、皮连生《学与教的心理学》(华东师范大学出版社1997年)

2、柳斌《学校教育科研全书》(九州图书出版社,人民日报出版社1998年)

3、肖柏荣《数学教育设计的艺术》(《数学通报》1996年10月)

4、章建跃《关于课堂教学中设置问题情境的几个问题》(《数学通报》1994年6月)

5、盛志军《今天,我没有完成授课计划》(《数学教学》2004年第11期)

6、冯克诚《中学数学研究:3+x中学成功教法体系⑧、⑨》(内蒙古出版社,2000年9月)

三人行,必有我师焉。快回答为大家分享的3篇数学教学论文就到这里了,希望在数学教学论文发表的写作方面给予您相应的帮助。