1. 主页 > 知识大全 >

人教版二次函数教学设计【精选7篇】(二次函数面积问题解题技巧和方法

作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么应当如何写教案呢?这里快回答为大家分享了7篇人教版二次函数教学设计,希望在二次函数教案的写作这方面对您有一定的启发与帮助。

次函数教案 篇一

目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

二、提出问题

某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

在这个问题中,可提出如下问题供学生思考并 回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

5.若设该商品每天的利润为y元,求y与x的函数关系式。

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x (0<x<10)……………………………(1)

将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

y =-100x2+100x+20D (0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?

(分别是二次多项式 )

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点 ?

让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y= 5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。

次函数教案 篇二

一、教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

二、教学重点、难点:

教学重点:

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

三、教学方法:启发引导 合作交流

四:教具、学具:课件

五、教学媒体:计算机、实物投影。

六、教学过程:

检查预习 引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解。

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

初中数学二次函数教学设计 篇三

Ⅰ.温故知新、引入新课:

二次函数的图象是____________.

(1)开口___________;

(2)对称轴是___________;

(3)顶点坐标是___________;

(4)当时,随的增大而___________;

当时,随的增大而___________;

(5)函数图象有___________点,函数有___________值;

当_____时,取得__________值____.

问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?

Ⅱ.自主探索、小组互学、展学提升:

1、学生活动内容及方法

学生以小组为单位:(1)作出二次函数的图象;

(2)观察、思考并与同伴交流完成“议一议”

(3)一小组派代表展示,其它小组与老师评价、完善。

2、自学问题设计

(1)作出二次函数的图象:

列表:观察的表达式,选择适当的值,填写下表:

描点:在直角坐标系中描出各点;

连线:用光滑的曲线连接各点,便得到函数的图象。

议一议:

仔细观察,用心思考,与同伴交流:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

3、教师活动内容

教师巡视,察看学生完成情况并适时给予指导。

当学生展开讨论时,参与到学生的交流中启发、点拨学生的思维。

当学生展示时,适时质疑、反问,帮助学生完善自己的思考

Ⅲ.自主探索、展示完善:

1、学生活动内容及方法

学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程,已经积累了一些方法和经验,所以此环节由学生自己独立完成:

(1)作出二次函数的图象;

(2)观察、思考完成“想一想”

(3)一学生展示,其他同学与老师评价、完善。

2、自学问题设计

问:

二次函数的图象会是什么样子?它与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?它图象的开口方向、对称轴、顶点坐标是什么?它的增减性、最值是什么情况呢?请你先猜一猜,然后做出它的图象观察思考,你猜的对吗?

(1)作出二次函数的图象:

列表:观察的表达式,选择适当的值,填写下表:

描点:在直角坐标系中描出各点;

连线:用光滑的曲线连接各点,便得到函数的图象。

(2)想一想:

仔细观察,用心思考:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

3、教师活动内容

教师巡视,察看学生解决问题情况并适时指导。之后请学生展示,师生共同评价完善。

Ⅳ.自主探索、小组互学、展学提升:

1、 学生活动内容及方法

学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基础上总结二此函数的性质。

2、导学问题设计

猜一猜:

(1)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质。

(2) 二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质。

议一议:

(1)二次函数的图象与二次函数的图象有什么关系?

(2)二次函数的性质:

二次函数

性质

开口方向

对称轴

顶点坐标

增减性

当______时,随的增大而增大;

当______时,随的增大而减小。

当______时,随的增大而增大;

当______时,随的增大而减小。

最值

当____时,函数取得

最____值____.

当____时,函数取得

最____值____.

3、教师活动内容

观察学生完成问题情况,并适时给予点拨。学生展示,师生共同评价完善。

Ⅴ.评测练习

1. 函数的图象可由的图象向平移 个单位长度得到;

函数的图象可由的图象向 平移 个单位长度得到。

2. 将函数的图象向平移 个单位可得函数的图象;

将函数的图象向平移 个单位长度可以得到函数的图象;

将函数的图象向平移 个单位可得到的图象。

3. 将抛物线向上平移3个单位,所得的抛物线的表达式是 .

将抛物线向下平移5个单位,所得的抛物线的表达式是 .

4. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,当时,随的增大而 ,当时,随的增大而 ,当 时,函数取得最 值,这个值等于 .

5. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,随的增大而 ,在对称轴的右侧,随的增大而 ,当x= 时,函数取得最 值,这个值等于 .

6. 二次函数的图象经过点A(1,-1),B(2,5),则函数的表达式为 ;若点C(-2,m),D(n ,15)也在函数的图象上,则点C的坐标为 ,点D的坐标为___________

初中数学二次函数教学设计 篇四

1.二次函数的图象和性质

2. 二次函数与二次函数图象的关系。

初中数学二次函数教学设计 篇五

建立二次函数模型教学设计

教学目标:

1.使学生能利用描点法画出二次函数=a(x—h)2的图象。

2.让学生经历二次函数=a(x-h)2性质探究的过程,理解函数=a(x-h)2的性质,理解二次函数=a(x-h)2的图象与二次函数=ax2的图象的关系。

重点难点:

重点:会用描点法画出二次函数=a(x-h)2的图象 ,理解二次函数=a(x-h)2的性质,理解二次函数=a(x-h)2的图象与二次函数=ax2的图象的关系是教学的重点。

难点:理解二次函数=a(x-h)2的性质,理解二次函数=a(x-h)2的图象与二次函数=ax2的图象的相互关系是教学的难点。

教学过程:

一、提出问题

1.在同一直角坐标系内,画出二次函数=-12x2,=-12x2-1的图象,并回答:

(1)两条抛物线的位置关系。

(2)分别说出它们的对称轴、开口方向和顶点坐标。

(3)说出它们所具有的公共性质。

2 .二次函数=2(x-1)2的图象与二次函数=2x2的图象的`开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?

二、分析问题,解决问题

问题1: 你将用什么方法来研究上面提出的问题?

(画出二次函数=2(x-1)2和二次函数=2x2的图象,并加以观察)

问题2:你能在同一直角坐标系中,画出二次函数=2x2与=2(x-1)2的图象吗?

教学要点

1.让学生完成下表填空。

x…-3-2-10123…

=2x2

=2(x-1)2

2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。

问题3:现在你能回答前面提出的问题吗?

教学要点

1.教师引导学生观察画出的两个函数图象.根据所画出的图象,完成以下填空:

开口方向对称轴顶点坐标

=2x2

=2(x-1)2

2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数=2(x-1)2与=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数=2(x一1)2的图象可以看作是函数=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。

问题4:你可以由函数=2x2的性质,得到函数=2(x-1)2的性质吗?

教学要点

1.教师引导学生回顾二次函数=2x2的性质,并观察二次函数=2(x- 1)2的图象;

2.让学生完成以下填空:

当x______时,函数值随x的增大而减小;当x______时,函数值随x的增大而增大;当x=______时,函数取得最______值=______。

三、做一做

问题5:你能在同一直角坐标系中画出函数=2(x+1)2与函数=2x2的图象,并比较它们的联系和区别吗?

教学要点

1.在学生画函数图象的同时,教师巡视、指导;

2.请两位同学上台板演,教师讲评;

3.让学生发表不同的意见,归结为:函数=2(x+1)2与函数=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数=2(x+1 )2的图象可以看作是将函数=2x2的图象向左平移1 个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。

问题6;你能由函数=2x2的性质,得到函 数=2(x+1)2的性质吗?

教学要点

让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值随x的增大而减小;当x>-1时,函数值随x的增大而增大;当x=一1时,函数取得最小值,最小值=0。

问题7:在同一直角坐标系中,函数=-13(x+2)2图象与函数=-13x2的图象有何关系?

(函数=-13(x+2)2的图象可以看作是 将函数=-13x2的图象向左平移2个单位得到的。)

问题8:你能说出函数=-13(x+2)2图象的开口方向、对称轴和顶点坐标吗?

(函数=-13(x十2)2的图象开口向下,对称轴是 直线x=-2,顶点坐标是(-2,0))。

问题9:你能得到函数=13(x+2)2的性质吗?

教学要点

让学生讨论、交流,发表意见,归结为:当x<-2时,函数值随x的增大而增大;

当x>-2时,函数值随工的增大而减小;当x=-2时,函数取得最大值,最大值=0。

四、课堂练习: P11练习1、2、3。

五、小结:

1.在同一直角坐标系中,函数=a(x-h)2的图象与函数=ax2的图象有什么联系和区别?

2.你能说出函数=a(x-h)2图象的性质吗?

3.谈谈本节课的收获和体会。

六、作业

1.P19习题26.2 1(2)。

2.选用课时作业优化设计。

第二课时作业优化设计

1.在同一直角坐标系中,画出下列各组两个二次函数的图象。

(1)=4x2与=4(x-3)2

(2)=12(x+1)2与=12(x-1)2

2.已知函数=-14x2,=-14(x+2)2和=-14(x-2)2。

(1)在 同一直角坐标中画出它们的函数图象;

(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;

(3)试说明,分别通过怎样的平移,可以由函数=-1/4x2的图象得到函数=-14(x+2)2和函数=-14(x-2)2的图象?

(4)分别说出各个函数的性质。

3.已知函数=4x2,=4(x+1)2和=4(x-1)2。

(1)在同一直角坐标系中画出它们的图象;

(2)分别说出各个函数图象的开口方向,对称轴、顶点坐标;

(3)试说明:分别通过怎样的平移,可以由函数 =4x2的图象得到函数=4(x+1)2和函数=4(x-1)2的图象,

(4)分别说出各个函数的性质 .

4.二次函数=a(x-h)2的最大值或最小值与二次函数图象的顶点有什么关系?

数学教案-二次函数教学设计 篇六

1. 能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响。

2. 能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值。

3. 经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用。

4. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解。

《二次函数》数学教案 篇七

二次函数的应用

教学设计思想

本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

教学目标:

1.知识与技能

会运用二次函数计其图像的知识解决现实生活中的实际问题。

2.过程与方法

通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

3.情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

教学重点:

解决与二次函数有关的实际应用题。

教学难点:

二次函数的应用。

教学媒体:

幻灯片,计算器。

教学安排:

3课时。

教学方法:

小组讨论,探究式。

教学过程:

第一课时:

Ⅰ.情景导入:

师:由二次函数的一般形式y= (a0),你会有什么联想?

生:老师,我想到了一元二次方程的一般形式 (a0)。

师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

现在大家来做下面这两道题:(幻灯片显示)

1.解方程 。

2.画出二次函数y= 的图像。

教师找两个学生解答,作为板书。

Ⅱ.新课讲授

同学们思考下面的问题,可以共同讨论:

1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

师:说的很好;

教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

问题:已知二次函数y= 。

(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

第一问很简单,可以请一名同学来回答这个问题。

生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

类似的,我们得出方程精确到百分位的正根是0.62。

对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

最后师生共同利用求根公式,验证求出的近似解。

教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

Ⅲ.练习

已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。

板书设计:

二次函数的应用(1)

一、导入 总结:

二、新课讲授 三、练习

第二课时:

师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

师:好,看这样一个问题你能否解决:

活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:

1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。

3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

学生思考,并小组讨论。

解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

由面积公式得 y= (x )

化简得 y=

代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

画函数图像:

通过图像,我们知道y的最大值为5。

师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

师:现在利用我们前面所学的知识,解决实际问题。

活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,

(1)AC=______;

(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____.

(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?

(4)总面积S取最大值或最小值时,点C在AB的什么位置?

教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

解答过程(板书)

解:(1)当BC=x时,AC=2-x(02)。

(2)S△CDE= ,S△BFG= ,

因此,S= + =2 -4x+4=2 +2,

画出函数S= +2(02)的图像,如图34-4-3。

(3)由图像可知:当x=1时, ;当x=0或x=2时, 。

(4)当x=1时,C点恰好在AB的中点上。

当x=0时,C点恰好在B处。

当x=2时,C点恰好在A处。

[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

练习:

如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。

(1)Rt△ABP与Rt△PCQ相似吗?为什么?

(2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少?

小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

板书设计:

二次函数的应用(2)

活动1: 总结方法:

活动2: 练习:

小结:

第三课时:

我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

(幻灯片显示交通事故、紧急刹车)

师:你知道两辆车在行驶时为什么要保持一定的距离吗?

学生思考,讨论。

师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

请看下面一个道路交通事故案例:

甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙= 。

教师提问:

1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

学生思考!教师引导。

对于二次函数S甲=0.1x+0.01x2:

(1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

(2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

下面看下面的这道例题:

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

v/(km/h) 40 60 80 100 120

s/m 2 4.2 7.2 11 15.6

(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

(3)求当s=9m时的车速v。

学生思考,亲自动手,提高学生自主学习的能力。

教师提问,学生回答正确答案,教师再进行讲解。

课上练习:

某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

板书设计:

二次函数的应用(3)

一、案例 二、例题

分析: 练习:

总结:

数学网

聪明在于勤奋,天才在于积累。以上就是快回答给大家分享的7篇人教版二次函数教学设计,希望能够让您对于二次函数教案的写作更加的得心应手。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。