通过实物操作,增强学生的直观感知,会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。这里给大家分享一些关于数学高一优秀教案,方便大家学习。下面是漂亮的小编给大家收集的高一数学教案(精选8篇)。
高一数学教案 篇一
学习目标1.函数奇偶性的概念
2.由函数图象研究函数的奇偶性
3.函数奇偶性的判断
重点:能运用函数奇偶性的定义判断函数的奇偶性
难点:理解函数的奇偶性
知识梳理:
1.轴对称图形:
2中心对称图形:
【概念探究】
1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。
2、 求出 , 时的函数值,写出 , 。
结论: 。
3、 奇函数:___________________________________________________
4、 偶函数:______________________________________________________
【概念深化】
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。
6. 根据函数的奇偶性,函数可以分为____________________________________.
题型一:判定函数的奇偶性。
例1、判断下列函数的奇偶性:
(1) (2) (3)
(4) (5)
练习:教材第49页,练习A第1题
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式
例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。
练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式
题型三:利用奇偶性作函数图像
例3 研究函数 的性质并作出它的图像
练习:教材第49练习A第3,4,5题,练习B第1,2题
当堂检测
1 已知 是定义在R上的奇函数,则( D )
A. B. C. D.
2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )
A. 增函数且最小值为-7 B. 增函数且最大值为7
C. 减函数且最小值为-7 D. 减函数且最大值为7
3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )
A. B. C. D.
4 已知函数 为奇函数,若 ,则 -1
5 若 是偶函数,则 的单调增区间是
6 下列函数中不是偶函数的是(D )
A B C D
7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函数 的图像必经过点( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )
A 0 B 1 C 2 D 4
10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__
11若f(x)在 上是奇函数,且f(3)_f(-1)
12.解答题
用定义判断函数 的奇偶性。
13定义证明函数的奇偶性
已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数
14利用函数的奇偶性求函数的解析式:
已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。
高一数学的教案 篇二
一。 教学内容:平面向量与解析几何的综合
二。 教学重、难点:
1、 重点:
平面向量的基本,圆锥曲线的基本。
2、 难点:
平面向量与解析几何的内在联系和知识综合,向量作为解决问题的一种工具的应用意识。
【典型例题
[例1] 如图,已知梯形ABCD中, ,点E分有向线段 所成的比为 ,双曲线过C、D、E三点,且以A、B为焦点,求双曲线的离心率。
解:如图,以AB的垂直平分线为 轴,直线AB为 轴,建立直角坐标系 轴,因为双曲线经过点C、D且以AB为焦点,由对称性知C、D关于 轴对称
设A( )B( 为梯形的高
∴
设双曲线为 则
由(1): (3)
将(3)代入(2):∴ ∴
[例2] 如图,已知梯形ABCD中, ,点E满足 时,求离心率 的取值范围。
解:以AB的垂直平分线为 轴,直线AB为 轴,建立直角坐标系 轴。
因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性,知C、D关于 轴对称 高中生物。
依题意,记A( )、E( 是梯形的高。
由
得
设双曲线的方程为 ,则离心率由点C、E在双曲线上,将点C、E的坐标和由(1)式,得 (3)
将(3)式代入(2)式,整理,得故 ,得解得所以,双曲线的离心率的取值范围为
[例3] 在以O为原点的直角坐标系中,点A( )为 的直角顶点,已知 ,且点B的纵坐标大于零,(1)求 关于直线OB对称的圆的方程。(3)是否存在实数 ,使抛物线 的取值范围。
解:
(1)设 ,则由 ,即 ,得 或
因为
所以 ,故
(2)由 ,得B(10,5),于是直线OB方程:由条件可知圆的标准方程为:得圆心(
设圆心( )则 得 ,
故所求圆的方程为(3)设P( )为抛物线上关于直线OB对称的两点,则
得
即 、于是由故当 时,抛物线(3)二:设P( ),PQ的中点M(∴ (1)-(2): 代入∴ 直线PQ的方程为
∴ ∴
[例4] 已知常数 , 经过原点O以 为方向向量的直线与经过定点A( 方向向量的直线相交于点P,其中 ,试问:是否存在两个定点E、F使 为定值,若存在,求出E、F的坐标,不存在,说明理由。(20xx天津)
解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值。
∵ ∴
因此,直线OP和AB的方程分别为 和消去参数 ,得点P( ,整理,得
① 因为(1)当(2)当 时,方程①表示椭圆,焦点E 和F 为合乎题意的两个定点;
(3)当 时,方程①也表示椭圆,焦点E 和F( )为合乎题意的两个定点。
[例5] 给定抛物线C: 夹角的大小,(2)设 求 在 轴上截距的变化范围
解:
(1)C的焦点F(1,0),直线 的斜率为1,所以 的方程为 代入方程 )、B(则有
所以 与
(2)设A( )由题设
即 ,由(2)得 ,
∴
依题意有 )或B(又F(1,0),得直线 方程为
当 或由 ,可知∴
直线 在 轴上截距的变化范围为
[例6] 抛物线C的方程为 )( 的两条直线分别交抛物线C于A( )两点(P、A、B三点互不相同)且满足 ((1)求抛物线C的焦点坐标和准线方程
(2)设直线AB上一点M,满足 ,证明线段PM的中点在 轴上
(3)当 ),求解:(1)由抛物线C的方程 ),准线方程为
(2)证明:设直线PA的方程为
点P( )的坐标是方程组 的解
将(2)式代入(1)式得
于是 ,故 (3)
又点P( )的坐标是方程组 的解
将(5)式代入(4)式得 ,故
由已知得, ,则设点M的坐标为( ),由 。则
将(3)式和(6)式代入上式得
即(3)解:因为点P( ,抛物线方程为由(3)式知 ,代入
将 得因此,直线PA、PB分别与抛物线C的交点A、B的坐标为
于是, ,
因即 或
又点A的纵坐标 满足当 ;当 时,所以,
[例7] 已知椭圆 和点M( 的取值范围;如要你认为不能,请加以证明。
解: 不可能为钝角,证明如下:如图所示,设A( ),直线 的方程为
由 得 ,又 , ,若 为钝角,则
即 ,即
即
即∴
∴
【模拟】(答题时间:60分钟)
1、 已知椭圆 ,定点A(0,3),过点A的直线自上而下依次交椭圆于M、N两个不同点,且 ,求实数 的取值范围。
2、 设抛物线 轴,证明:直线AC经过原点。
3、 如图,设点A、B为抛物线 ,求点M的轨迹方程,并说明它表示什么曲线。
4、 平面直角坐标系中,O为坐标原点,已知两点A(3,1),B( )若C满足 ,其中 ,求点C的轨迹方程。
5、 椭圆的中心是原点O,它的短轴长为 ,相应于焦点F( )的准线 与 轴相交于点A, ,过点A的直线与椭圆相交于P、Q两点。
(1)求椭圆的方程;
(2)设 ,过点P且平行于准线 的直线与椭圆相交于另一点M,证明 ;
(3)若 ,求直线PQ的方程。
【试题答案】
1、 解:因为 ,且A、M、N三点共线,所以 ,且 ,得N点坐标为
因为N点在椭圆上,所以即所以
由
解得2. 证明:设A( )、B( )( ),则C点坐标为( 、
因为A、F、B三点共线,所以 ,即
化简得
由 ,得
所以
即A、O、C三点共线,直线AC经过原点
3、 解:设 、 、则 、
∵ ∴
即又
即 (2) ∵ A、M、B三点共线
∴
即
化简得 ③
将①②两式代入③式,化简整理,得
∵ A、B是异于原点的点 ∴ 故点M的轨迹方程是 ( )为圆心,以4. 方法一:设C(
由 ,且 ,
∴ 又 ∵ ∴
∴ 方法二:∵ ,∴ 点C在直线AB上 ∴ C点轨迹为直线AB
∵ A(3,1)B( ) ∴ 5. 解:(1) ;(2)A(3,0),
由已知得 注意解得 ,因F(2,0),M( )故
而
(3)设PQ方程为 ,由
得依题意 ∵
∴ ①及 ③
由①②③④得 ,从而所以直线PQ方程为
高一数学教案全集5 篇三
数学教案-圆
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备。
难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂。
2、教法建议
本节内容需要4课时
第一课时:圆的定义和点和圆的位置关系
(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));
(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识。
第二课时:圆的有关概念
(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;
(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线。
第三、四课时:点的轨迹
条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度。但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则。
第一课时:圆(一)
教学目标 :
1、理解圆的描述性定义,了解用集合的观点对圆的定义;
2、理解点和圆的位置关系和确定圆的条件;
3、培养学生通过动手实践发现问题的能力;
4、渗透“观察→分析→归纳→概括”的数学思想方法。
教学重点:点和圆的关系
教学难点 :以点的集合定义圆所具备的两个条件
教学方法:自主探讨式
教学过程 设计(总框架):
一、 创设情境,开展学习活动
1、让学生画圆、描述、交流,得出圆的第一定义:
定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径。记作⊙O,读作“圆O”。
2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义。
从旧知识中发现新问题
观察:
共性:这些点到O点的距离相等
想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?
(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);
(2) 到定点距离等于定长的点都在圆上。
定义2:圆是到定点距离等于定长的点的集合。
3、点和圆的位置关系
问题三:点和圆的位置关系怎样?(学生自主完成得出结论)
如果圆的半径为r,点到圆心的距离为d,则:
点在圆上d=r;
点在圆内d
点在圆外d>r.
“数”“形”
二、 例题分析,变式练习
练习: 已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.
例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上。
已知(略)
求证(略)
分析:四边形ABCD是矩形
A=OC,OB=OD;AC=BD
OA=OC=OB=OD
要证A、B、C、D 4个点在以O为圆心的圆上
证明:∵ 四边形ABCD是矩形
∴ OA=OC,OB=OD;AC=BD
∴ OA=OC=OB=OD
∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上。
符号“”的应用(要求学生了解)
证明:四边形ABCD是矩形
OA=OC=OB=OD
A、B、C、D 4个点在以O为圆心,OA为半径的圆上。
小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等。
问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上。(让学生探讨)
练习1 求证:菱形各边的中点在同一个圆上。
(目的:培养学生的分析问题的能力和逻辑思维能力。A层自主完成)
练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形。
(1)和点A的距离等于2cm的点的集合;
(2)和点B的距离等于2cm的点的集合;
(3)和点A,B的距离都等于2cm的点的集合;
(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)
三、 课堂小结
问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:
(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;
(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;
(3)注重对数学能力的培养
高一数学教案 篇四
教学目标
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的。常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学重难点
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学过程
一、知识归纳
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域。点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
高一数学教案 篇五
教学目标
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学建议
(一)教材分析
1.知识结构
首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.
2.重点难点分析
本节的重点与难点是关于充要条件的判断.
(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.
(2)在判断条件和结论之间的因果关系中应该:
①首先分清条件是什么,结论是什么;
②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;
③最后再指出条件是结论的什么条件.
(3)在讨论条件和条件的关系时,要注意:
①若,但,则是的充分但不必要条件;
②若,但,则是的必要但不充分条件;
③若,且,则是的充要条件;
④若,且,则是的充要条件;
⑤若,且,则是的既不充分也不必要条件.
(4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.
①若,则是的充分条件;
显然,要使元素,只需就够了.类似地还有:
②若,则是的必要条件;
③若,则是的充要条件;
④若,且,则是的既不必要也不充分条件.
(5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.
(二)教法建议
1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.
2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.
3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.
4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.
教学设计示例
充要条件
教学目标:
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学重点难点:
关于充要条件的判断
教学用具:
幻灯机或实物投影仪
教学过程设计
1.复习引入
练习:判断下列命题是真命题还是假命题(用幻灯投影):
(1)若,则;
(2)若,则;
(3)全等三角形的面积相等;
(4)对角线互相垂直的四边形是菱形;
(5)若,则;
(6)若方程有两个不等的实数解,则.
(学生口答,教师板书.)
(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.
置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?
答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.
对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.
2.讲授新课
(板书充分条件的定义.)
一般地,如果已知,那么我们就说是成立的充分条件.
提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.
(学生口答)
(1)“,”是“”成立的充分条件;
(2)“三角形全等”是“三角形面积相等”成立的充分条件;
(3)“方程的有两个不等的实数解”是“”成立的充分条件.
从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.
(板书必要条件的定义.)
提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.
(学生口答).
(1)因为,所以是的充分条件,是的必要条件;
(2)因为,所以是的必要条件,是的充分条件;
(3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;
(4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;
(5)因为,所以是的必要条件,是的充分条件;
(6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.
总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.
(板书充要条件的定义.)
3.巩固新课
例1(用投影仪投影.)
(学生活动,教师引导学生作出下面回答.)
①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;
②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;
③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;
④表示或,所以是成立的必要非充分条件;
⑤由交集的定义可知且是成立的充要条件;
⑥由知且,所以是成立的充分非必要条件;
⑦由知或,所以是,成立的必要非充分条件;
⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;
(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)
例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)
解:由已知得,
所以是的充分条件,或是的必要条件.
4.小结回授
今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.
课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.
(通过练习,检查学生掌握情况,有针对性的进行讲评.)
5.课外作业:教材第36页 习题1.8 1、2、3.
高一数学的教案 篇六
教学准备
教学目标
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程
【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练
1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成
A、511B、512C、1023D、1024
2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为
A、B、
C、D、
二、典型例题
例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?
评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]
例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?
例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3
例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。
高一数学教案 篇七
案例背景:
对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
案例叙述:
(一).创设情境
(师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。这个熟悉的函数就是指数函数。
(提问):什么是指数函数?指数函数存在反函数吗?
(学生): 是指数函数,它是存在反函数的。
(师):求反函数的步骤
(由一个学生口答求反函数的过程):
由 得 .又 的值域为 ,
所求反函数为 .
(师):那么我们今天就是研究指数函数的反函数-----对数函数。
(二)新课
1.(板书) 定义:函数 的反函数 叫做对数函数。
(师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
(教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)
(学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
(在此基础上,我们将一起来研究对数函数的图像与性质。)
2.研究对数函数的图像与性质
(提问)用什么方法来画函数图像?
(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。
(学生2)用列表描点法也是可以的。
请学生从中上述方法中选出一种,大家最终确定用图像变换法画图。
(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图。
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分。
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图:
教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧。
(3)图像恒过(1,0)
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称。
(5) 单调性:与 有关。当 时,在 上是增函数。即图像是上升的
当 时,在 上是减函数,即图像是下降的。
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。
最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用。
(三).简单应用
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制。
2. 利用单调性比较大小
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小。最后让学生以其中一组为例写出详细的比较过程。
三。拓展练习
练习:若 ,求 的取值范围。
四。小结及作业
案例反思:
本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。
2020高一数学教案 篇八
立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。