1. 主页 > 知识大全 >

八年级数学教案(优秀10篇)(八年级上册数学教案免费下载)

作为一位不辞辛劳的人民教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?为了加深您对于八年级数学教案的写作认知,下面快回答给大家整理了10篇八年级数学教案,欢迎您的阅读与参考。

八年级数学教案 篇一

一、学生起点分析

通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

二、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

三、教学过程设计

本节课设计了6个教学环节:

第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗?

目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长 的平方 ,并提出问题: 是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】: 已知 ,请问:① 可能是整数吗?② 可能是分数吗?

【释一释】:释1.满足 的 为什么不是整数?

释2.满足 的 为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然 不是整数也不是分数,那么 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

第四环节:应用与巩固

内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

【画一画1】:在右1的正方形网格中,画出两条线段:

1.长度是有理数的线段

2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形 (右1)

2.三边长都是有理数

2.只有两边长是有理数

3.只有一边长是有理数

4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足 的

解: (右2)

仿:在数轴上表示满足 的

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)

目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

效果:加深了对“新知”的理解,巩固了本课所学知识.

第五环节:课堂小结

内容:

1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

效果:学生总结、相互补充,学会进行概括总结.

第六环节:布置作业

习题2.1

六、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

八年级数学教案 篇二

一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系。

2.掌握矩形的性质定理。

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

4.通过性质的学习,体会矩形的应用美。

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式。

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论。

2.教学难点:矩形的本质属性及性质定理的综合应用。

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形, 堂课我们就来研究一种特殊的`平行四边形矩形(写出课题).

【讲解新课】

制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

矩形的性质:

既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质。

继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明。引导学生利用平行四边形角的性质证明得出。

矩形性质定理1:矩形的四个角都是直角。

矩形性质定理2:矩形对角线相等。

由矩形性质定理2我们可以得到

推论:直角三角形斜边上的中线等于斜边的一半。

(这实际上是 △的一个重要性质,即 △斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

例1 已知如图1 矩形 的两条对角线相交于点, , ,求矩形对角线的长。(按教材的格式)

(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

【总结、扩展】

1.小结:(用投影打出)

(1)矩形、平行四边形、四边形从属关系如图。

(2)矩形性质。

1.具有平行四边形的所有性质。

2.特有性质:四个角都是直角,对角线相等。

3.思考题:已知如图, 是矩形 对角线交点, 平分 , ,求 的度数

八、布置作业

教材P158中2、5,P195中7.

九、板书设计

十、随堂练习

教材P146中1、2、3、4

八年级数学教案 篇三

教材分析

本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。

学情分析

本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。

从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。

教学目标

1、知识与技能:

掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。

2、过程与方法:

(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;

(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

3、情感态度与价值观:

(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;

(2)通过性质的推导体会“特殊”。

八年级数学教案 篇四

单元(章)主题第三章 直棱柱任课教师与班级

本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时

教学目标(含重点、难点)及

设置依据教学目标

1、了解多面体、直棱柱的有关概念。

2、会认直棱柱的侧棱、侧面、底面.

3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.

教学重点与难点

教学重点:直棱柱的有关概念。

教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力。

教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型

教 学 过 程

内容与环节预设、简明设计意图二度备课(即时反思与纠正)

一、创设情景,引入新课

师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?

析:学生很容易回答出更多的答案。

师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

二、合作交流,探求新知

1.多面体、棱、顶点概念:

师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?

析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点

2.合作交流

师:以学习小组为单位,拿出事先准备好的几何体。

学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描

述其特征。)

师:同学们再讨论一下,能否把自己的语言转化为数学语言。

学生活动:分小组讨论。

说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

师:请大家找出与长方体,立方体类似的物体或模型。

析:举出实例。(找出区别)

师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

长方体和正方体都是直四棱柱。

3.反馈巩固

完成“做一做”

析:由第(3)小题可以得到:

直棱柱的相邻两条侧棱互相平行且相等。

4.学以至用

出示例题。(先请学生单独考虑,再作讲解)

析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)

最后完成例题中的“想一想”

5.巩固练习(学生练习)

完成“课内练习”

三、小结回顾,反思提高

师:我们这节课的重点是什么?哪些地方比较难学呢?

合作交流后得到:重点直棱柱的有关概念。

直棱柱有以下特征:

有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

侧面都是长方形含正方形。

例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

板书设计

作业布置或设计作业本及课时特训

八年级数学教案 篇五

教学目标:

1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

2、能力目标:

①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

重点与难点:

重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

难点:综合利用各种变换关系观察图形的形成。

疑点:基本图案不同,形成方式不同。

教学方法:

新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

教学过程设计:

1、情境导入

播放自制图形形成的影片,如图351。

2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:

(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;

(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;

(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

(学生可能还有其他不同描述,教师应予以肯定)

3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?

学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1、怎样将图353中的甲图变成乙图案?

通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

例2、怎样将图354中右边的图案变成左边的图案?

留给学生充足的时间讨论交流。

(师):哪位同学有好好方法,请告诉大家!

(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900 。

(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700 。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

5、学习小结

(1)内容总结

两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

(2)方法归纳

①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

6、目标检测

图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?

延伸拓展:

1、链接生活

链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

实践探索:

①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)

②巩固练习课本74页中的习题3.6。

板书设计:

3.5它们是怎样变过来的。

轴对称、平移、旋转的性质例题;

图形之间的变换关系;

八年级数学教案 篇六

教学目标

(一)教学知识点

1、等腰三角形的概念、

2、等腰三角形的性质、

3、等腰三角形的概念及性质的应用、

1、经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点、

2、探索并掌握等腰三角形的性质、

(三)情感与价值观要求

通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯、

教学重点

1、等腰三角形的概念及性质、

2、等腰三角形性质的应用、

教学难点

等腰三角形三线合一的性质的理解及其应用、

教学方法

探究归纳法、

教具准备

师:多媒体课件、投影仪;

生:硬纸、剪刀、

教学过程

1、提出问题,创设情境

(师)在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

①三角形是轴对称图形吗?

②什么样的三角形是轴对称图形?

(生)有的三角形是轴对称图形,有的三角形不是。

(师)那什么样的三角形是轴对称图形?

(生)满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

(师)很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

2、导入新课

(师)同学们通过自己的思考来做一个等腰三角形。作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

(生乙)在甲同学的做法中,A点可以取直线L上的任意一点。

(师)对,按这种方法我们可以得到一系列的等腰三角形、现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,剪出一个等腰三角形。

(师)按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

(师)有了上述概念,同学们来想一想。

(演示课件)

1、等腰三角形是轴对称图形吗?请找出它的对称轴。

2、等腰三角形的两底角有什么关系?

3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

(生甲)等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

(师)同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

(生乙)我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

(生丙)我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

(生丁)我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

(生戊)老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

(师)你们说的是同一条直线吗?大家来动手折叠、观察。

(生齐声)它们是同一条直线。

(师)很好、现在同学们来归纳等腰三角形的性质。。

(生)我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

(师)很好,大家看屏幕。

(演示课件)

等腰三角形的性质:

1、等腰三角形的两个底角相等(简写成“等边对等角”)

2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

(师)由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)

(投影仪演示学生证明过程)

(生甲)如右图,在ABC中,AB=AC,作底边BC的中线AD,因为

所以BAD≌CAD(SSS)、

所以∠B=∠C、

(生乙)如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以BAD≌CAD、

所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

(师)很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范、下面我们来看大屏幕。

(演示课件)

(例1)如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数、

(师)同学们先思考一下,我们再来分析这个题、

(生)根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形内角和为180°,就可求出ABC的三个内角。

(师)这位同学分析得很好,对我们以前学过的定理也很熟悉、如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

(课件演示)

(例)因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等边对等角)、

设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x、

于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

在ABC中,∠A=35°,∠ABC=∠C=72°、

(师)下面我们通过练习来巩固这节课所学的知识、

3、随堂练习

(一)课本P141练习1、2、3。

练习

1、如下图,在下列等腰三角形中,分别求出它们的底角的度数、

答案:(1)72°(2)30°

2、如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?

答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

3、如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数、

答:∠B=77°,∠C=38、5°、

(二)阅读课本P138~P140,然后小结、

4、课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

5、课后作业

(一)课本P147─1、3、4、8题、

(二)1、预习课本P141~P143、

2、预习提纲:等腰三角形的判定、

6、活动与探究

如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E、

求证:AE=CE、

过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的性质、

结果:

证明:延长CD交AB的延长线于P,如右图,在ADP和ADC中

ADP≌ADC、

∠P=∠ACD、

又DE∥AP,

∠4=∠P、

∠4=∠ACD、

DE=EC、

同理可证:AE=DE、

AE=CE、

板书设计

八年级数学教案 篇七

八年级下数学教案-变量与函数(2)

一、教学目的

1.使学生理解自变量的取值范围和函数值的意义。

2.使学生理解求自变量的取值范围的两个依据。

3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

二、教学重点、难点

重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程

复习提问

1.函数的定义是什么?函数概念包含哪三个方面的内容?

2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的条件是什么?

(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课

1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

(1)例3中的4个小题归纳起来仍是三类题型。

(2)求函数值的问题实际是求代数式值的问题。

补充例题

求下列函数当x=3时的函数值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小结

1.解析法的意义:用数学式子表示函数的方法叫解析法。

2.求函数自变量取值范围的两个方法(依据):

(1)要使函数的解析式有意义。

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式是分式时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

练习:P94中1,2,3。

作业:P95~P96中A组3,4,5,6,7。B组1,2。

四、教学注意问题

1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

八年级数学教案 篇八

5 14.3.2.2 等边三角形(二)

教学目标

掌握等边三角形的性质和判定方法.

培养分析问题、解决问题的能力.

教学重点

等边三角形的性质和判定方法.

教学难点

等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

III课堂小结

1、等腰三角形和性质

2、等腰三角形的条件

V布置作业

1.教科书第147页练习1、2

2.选做题:

(1)教科书第150页习题14.3第ll题.

(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

(3)《课堂感悟与探究》

5

八年级数学教案 篇九

教学目标

①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

教学重点与难点

重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

教学准备

卡片及多媒体课件。

教学设计

情境引入

教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

探究新知

(1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?

(2)你能利用(1)中的方法计算下列各式吗?

8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?

注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

归纳法则

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

应用新知

例2计算:

(1)28x4y2÷7x3y;

(2)—5a5b3c÷15a4b。

首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

巩固新知教科书第162页练习1及练习2。

学生自己尝试完成计算题,同桌交流。

注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

作业

1。必做题:教科书第164页习题15。3第1题;第2题。

2。选做题:教科书第164页习题15。3第8题

八年级数学教案 篇十

一、课堂导入

回顾平行四边的性质定理及定义

1.什么叫平行四边形?平行四边形有什么性质?

2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

二、新课讲解

平行四边形的判定:

(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:

∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

活动:用做好的'纸条拼成一个四边形,其中强调两组对边分别相等。

(平行四边形判定定理):

(一)两组对边分别相等的四边形是平行四边形。

设问:这个命题的前提和结论是什么?

已知:四边形ABCD中,AB=CD,BC=DA。

求证:四边ABCD是平行四边形。

分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

板书证明过程。

小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

他山之石,可以攻玉。上面就是快回答给大家整理的10篇八年级数学教案,希望可以加深您对于写作八年级数学教案的相关认知。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。