1. 主页 > 知识大全 >

平方差公式教案【优秀8篇】(《平方差公式》的教案范文)

作为一名老师,就不得不需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。一份好的教学设计是什么样子的呢?为了帮助大家更好的写作平方差公式,快回答整理分享了8篇平方差公式教案。

平方差公式教学反思 篇一

(1)102 (2)(y+2)(y-2)(y2+4).

解:(1)10298 (2)(y+2)(y-2)(y2+4)

=(100+2)(100-2) =(y2-4)(y2+4)

=1002-22=10000-4 =(y2)2-42=y4-16.

=9996;

2.运用平方差公式计算:

(1)103 (2)(x+3)(x-3)(x2+9);

(3)59.8 (4)(x- )(x2+ )(x+ ).

3.请每位同学自编两道能运用平方差公式计算的题目。

例2 填空:

(1)a2-4=(a+2);(2)25-x2=(5-x)();(3)m2-n2=()();

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)

练习

填空:

1.x2-25=()();

2.4m2-49=(2m-7)();

3.a4-m4=(a2+m2)()=(a2+m2)()();

例3 计算:

(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3) (2)(m2+n-7)(m2-n-7)

=[(a+b)-3][(a+b)+3] =[(m2-7)+n][(m2-7)-n]

=(a+b)2-9=a2+2ab+b2-9. =(m2-7)2-n2

=m4-14m2+49-n2.

三、小结

1.什么是平方差公式?一般两个二项式相乘的积应是几项式?

2.平方差公式中字母a、b可以是那些形式?

3.怎样判断一个多项式的乘法问题是否可以用平方差公式?

四、布置作业

1.运用平方差公式计算:

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

2.运用平方差公式计算:

(1)69 (2)53 (3)503 (4)40 39 .

《完全平方公式与平方差公式》教学设计 篇二

授课教师:

授课时间:

课型:新授

课题:3.4探究实际问题与一元一次方程组

教学目标基础知识:掌握一元一次方程得解法,了解销售中的数量关系。

基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。

基本思想

方法:通过将实际问题转化成数学问题,培养学生的建模思想;

基本活动经验体会解决实际问题的一般步骤及盈亏中的关系

重点探索并掌握列一元一次方程解决实际问题的方法,

教学

难点找出已知量与未知量之间的关系及相等关系。

教具资料准备教师准备:课件

学生准备:书、本

教 学 过 程自备

补充集备

补 充

一、创设情景 引入新课

观察图片引课(见大屏幕)

二、探究

探究销售中的盈亏问题:

1、商品原价200元,九折出售,卖价是 元。

2、商品进价是30元,售价是50元,则利润

是 元。

2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元。

3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元。

4、某商品按定价的八折出售,售价是14.8元,则原定售价是 。

(学生总结公式)

熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系

三、探究一

某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25?,另一件亏损25?,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

分析:售价=进价+利润

售价=(1+利润率)×进价

练习(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?

(2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?

(3)某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为 元。

注:标价×n/10=进(1+率)

(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,

则这种药品在2005年涨价前价格为 元。

四、小结

通过本节课的学习你有哪些收获?你还有哪些疑惑?

亏损还是盈利对比售价与进价的关系才能加以判断

小组研究解决提出质疑

优生展示讲解质疑

五、作业布置:

板书设计 一元一次方程的应用-----盈亏问题

相关的关系式: 例题

课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。

《完全平方公式与平方差公式》教学设计 篇三

一、课 题 8.3.3实际问题与二元一次方程组(三) 编写备课组

二、本课学习目标与任务:1、进一步提高分析,解决问题的能力。

2、学会条件整理,明晰解题思路。

3、理解设间接未知数的意义。

三、知识链接:1、学会用列表格或画图法分析题目,理顺关系,使得各种数量关系一目了然,具有直观易懂的优点,避免了因数据多,关系复杂而混淆不清。

2、当直接设未知数时难于列出方程或找到相关的等量关系,我们可采取用间接设未知数的办法。

四、自学任务(分层)与方法指导:1、长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,已知公路运价为1.5元/(吨。千米)。铁路运价为1.2元/(吨。千米),且这两次运输共支出公路运费15000元。铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

问题设疑:从A到长青化工厂,铁路走多少公里?公路走多少公里?

从长青化工厂到B,铁路走多少公里?公路走多少公里?

铁路每吨千米运价是多少?公路每吨千米运价是多少?

两次运输总支出为多少元?

分析:销售款与产品数量有关,原料费与原料数量有关,设产品重 吨,原料重 吨,根据题中数量关系填定下表:

产品 吨

原料 吨

合计

公路运费(元)

铁路运费(元)

价 值(元)

题目所求数值是 ,为此需先解出 与 。

由上表,列方程组

解这个方程组,得

因此,这批产品的销售款比原料费与运输费的和多 元。

五、小组合作探究问题与拓展:1七年级某班同学参加平整土地劳动,运土人数比挖土人数的一半多3人,若从挖土人员中抽出6人去运土,则两者人数相等,原来有运土________人,挖土_______人。

2、足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分,一个队打11场,负3场,共得16分,那么这个队胜了______ 场。

3、甲、乙两厂计划在五月份共生产零件360个,结果甲完成了计划的112%,乙完成了计划的110%,两厂生产了零件400个,则五月份甲、乙两厂超额生产的零件分别为_多少个?

六、自学与合作学习中产生的问题及记录

当堂检测题

1、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球有_______个,排球有______个,足球有_______个。

2、已知梯形的面积是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,则梯形的上、下底分别是____________。

3、小兵最近购买了两种三年期债券5000元,甲种年利率为5.8%,乙种年利率为6%,三年后共可得到利息888元,则他购甲种债券________ 元,乙种债券_______元。

4、甲对乙风趣地说:“我像你这样大岁数的那年,你才2岁;而你像我这样大岁数的那年,我已经38岁了。”则甲、乙两人现在的岁数分别是_______。

5、某商店为了处理积压商品,实行亏本销售,已知购进的甲、乙商品原价共为880元,甲种商品按原价打8折,乙种商品按原价打七五折,结果两种商品共亏196元,则甲、乙商品的原价分别为( )

A、400元,480元B、480元,400元

C、360元,300元D、300元,360元

《完全平方公式与平方差公式》教学设计 篇四

一、课 题 8.3.1实际问题与二元一次方程组

(一) 编写备课组

二、本课学习目标与任务:1、进步学习用二元一次方程组解决实际问题,提高解决复杂及开放性问题的能力。

2、培养学生独立探究和合作交流的学习习惯。

3、进行解题过程的规范训练。

4、理解估算的意义及估算与精确计算的关系。

三、知识链接:1、解方程组

2、两台大收割机和五台小收割机,两小时收割3.6公顷,三台大收割机和两台小收割机,五小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?

由题意可找两个相等的数量关系:

公顷数+ 公顷数=3.6公顷

公顷数+ 公顷数=8公顷

故可设两个未知数为:

四、自学任务(分层)与方法指导:1、养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg,饲养员李大叔估计每只大牛1天约需饲料18~20 kg,每只小牛1天约需饲料7~8 kg,你能否通过计算检验他的估计?

分析:设每只大牛和每只小牛1天各约用饲料 kg和 kg,根据两种情况的饲料用量,找出相等关系,列方程组 ,解这个方程组,得 ,这就是说,每只大牛1天需饲料 kg,每只小牛1天约需饲料 kg。因此,饲养员李大叔对大牛的。食量估计 ,对小牛的食量估计 。

2、利用二元一次方程组解可设 个未知数,必须找到 个与所设未知数相关的等量关系。这几个等量关系必须具备两条件:

○1: ;○2: 。

3、课本中探究1的情景里的每只大牛和小牛估计,所需的饲料量其实是一个 数。

五、小组合作探究问题与拓展:1、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴,村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元。

求:(1)A型洗衣机和B型洗衣机的售价各是多少元?

(1)小李和小王购买洗衣机除财政补贴外实际各付款多少元?

六、自学与合作学习中产生的问题及记录

当堂检测题

1、某校运动员分组训练,若每组7人余3人,若每组8人,则缺5人,设运动员人数为 人,组数为 组,则列方程组( )

A、 B、 C、 D、

2、某地区“退耕还林”后,耕地面积和林地面积共180平方千米,耕地面积是林地面积的25%,设耕地面积为 平方千米,林地面积为 平方千米,根据题意,可得方程组

A、 B、 C、 D、

3、某人身上只有2元和5元两种纸币,他买一件物品需支付27元,则付款的方法有( )

A、1种 B、2种 C、3种 D、4种

4、古代有这样一个寓言故事,驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )

A、5 B、6 C、7 D、8

5、某同学买了 枚1元邮票与 枚2元邮票共12枚,花了20元钱,求1元的邮票与2元的邮票各买了多少张?那么适合 的方程组为( )

A、 B、 C、 D、

平方差公式教学设计 篇五

《平方差公式》教学反思

学生已经掌握了多项式与多项式相乘,但是对于某些特殊的多项式相乘,可以写成公式的形式,直接写出结果,乘法公式应用十分广泛,也是本章重点内容之一。

平方差公式是第一个乘法公式,教学时,我是这样引入新课的,先计算下列各题,看谁做的又对又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激发学生的好胜心并为进一步探索新知搭建好有力的平台,然后我又让学生讨论交流上面几个等式左、右两边各有什么特点,你能用字母表示你发现的规律吗?你能用语言叙述这个规律吗?给学生充分的观察、分析、讨论交流的时间,老师应及时的给与必要的指导、鼓励和由衷的赞美,这一点我做的还很不够,今后要多多注意。

然后我有设计了这样一道题:下列多项式乘法中可以用平方差公式计算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)帮助学生理解公式的特征,掌握公式的。特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。

平方差公式教学反思 篇六

平方差公式教学设计

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.

1.是由多项式乘法直接计算得出的:

与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.

2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.

只要符合公式的结构特征,就可运用这一公式.例如

在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.

3.关于的特征,在学习时应注意:

(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.

(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).

(3)公式中的和可以是具体数,也可以是单项式或多项式.

(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.

三、教法建议

1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验☆www.kuaihuida.com☆,从而培养学生观察、概括的。能力.

2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

(a+b)(a-b)=a2+ab-ab-b2=a2-b2.

这样得出,并且把这类乘法的实质讲清楚了.

3.通过例题、练习与小结,教会学生如何正确应用.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

(1+2x)(1-2x)=12-(2x)2=1-4x2↓ ↓ ↓ ↓ ↑ ↑

(a + b)(a - b)=a2- b2.

这样,学生就能正确应用公式进行计算,不容易出差错.

另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.

教学目标

1.使学生理解和掌握,并会用公式进行计算;

2.注意培养学生分析、综合和抽象、概括以及运算能力.

教学重点和难点

重点:的应用.

难点:用公式的结构特征判断题目能否使用公式.

教学过程设计

一、师生共同研究

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.

让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的.

在此基础上,让学生用语言叙述公式.

二、运用举例 变式练习

例1 计算(1+2x)(1-2x).

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教师引导学生分析题目条件是否符合特征,并让学生说出本题中a,b分别表示什么.

例2 计算(b2+2a3)(2a3-b2).

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用进行计算.

课堂练习

运用计算:

(l)(x+a)(x-a); (2)(m+n)(m-n);

(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

例3 计算(-4a-1)(-4a+1).

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用,就能比较简捷地得到答案.

课堂练习

1.口答下列各题:

(l)(-a+b)(a+b); (2)(a-b)(b+a);

(3)(-a-b)(-a+b); (4)(a-b)(-a-b).

2.计算下列各题:

(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

三、小结

1.什么是?

2.运用公式要注意什么?

(1)要符合公式特征才能运用;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.

四、作业

1.运用计算:

(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

2.计算:

(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

(3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).

热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)第一场雪Unit2Lookatme第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章·多项式的乘法·单项式与多项式相乘·单项式的乘法·幂的乘方与积的乘方(二)·幂的乘方与积的乘方·同底数幂的乘法(二)·同底数幂的乘法·一元一次不等式组和它的解法中“ 课件”中“ 课件”

《平方差公式》教学设计 篇七

公式法进行因式分解,虽然应用的公式只是三条,但要灵活应用于解题却不容易。逆用平方差公式进行因式分解相对来说还是稍微简单些。

逆用平方差公式进行因式分解关键还是要搞清平方差公式(a+b)(a—b)=a2—b2的结构特点:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。

有了前边学习习近平方差公式为基础,逆用平方差公式进行因式分解只需要转换思维即可。但对学生来说,还是相当困难的。逆用平方差公式进行因式分解的步骤可分三步:

1、写成两项平方、差的形式,即找到相当于公式中a、b的项;

2、按公式写出两项积的形式,即因式分解;

3、两项中能合并同类项的各自合并。

例题及练习的呈现次序尽量本着先易后难的螺旋上升原则。

1、a、b代表单独的数字或字母,如:(1)m2—9(2)16—y2

2、a、b代表单独的数字、字母或只含数字、字母的单项式,如:

4b2—9c2(2)m2n2—25

3、a、b代表多项式,如:(1)(2a+b)2—(a—b)2

—(a+b+c)2+(a—b—c)2

在此要有“整体思想”的意识,注意:+部分的底数作为一个整体相当于a,—部分的底数作为一个整体相当于b,然后再套用公式。

尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题:

1、不会找a、b

2、思维僵化,对于与公式相同或者相似的式子而需要转化的或者多种公式混合使用的式子难以入手,说明灵活运用公式的能力较差,如要将9-25X2化成32-(5X)2然后应用平方差公式这样的题目却无从下手

3、因式分解要养成先提公因式的习惯,结果要注意到是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)

因式分解是一个重要的内容,也是难点,要根据学生的接受能力,注意到计算题在练习方面的巩固及题型的多样化,相应地对教材内容及教学进度做出调整。

《完全平方公式与平方差公式》教学设计 篇八

内容:8.3完全平方公式与平方差公式(2)P64--67

课型:

新授日期:

学习目标:

1、经历探索平方差公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导平方差公式,了解公式的几何背景,会用公式计算。

3、进一步体会数形结合的数学思想和方法。

学习重点:会推导平差方公式,并能运用公式进行简单的计算。

学习难点:掌握平方差公式的结构特征,理解公式中a、b的广泛含义。

学习过程:

一、学习准备

1、利用多项式乘以多项式计算:

(1) (a+1)(a-1)

(2) (x+y)(x-y)

(3) (3a+2b)(3a-2b)

(4) (0.2x+0.04y)(0.2x-0.04y)

观察以上算式及运算结果,你发现了什么?再举两例验证你的发现。

2、以上算式都是两个数的和与这两个的差相乘,运算结果是这两个数的平方的差。我们把这样特殊形式的多项式相乘,称为平方差公式,以后可以直接使用。

平方差公式用字母表示为:(a+b)(a-b)=a2-b2

尝试用自己的语言叙述平方差公式:

3、平方差公式的几何意义:阅读课本65页,完成填空。

4、平方差公式的结构特征:(a+b)(a-b)=a2-b2

左边是两个二项式相乘,两个二项式中的项有什么特点?右边的结果与左边的项有什么关系?

注意:公式中字母的含义广泛,可以是 ,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□+○)(□-○)=□2-○2

5、判断下列算式能否运用平方差公式。

(1) (x+y)(-x-y) (2) (-y+x)(x+y)

(3) (x-y)(-x-y) (4) (x-y)(-x+y)

二、合作探究

1、利用乘法公式计算:

(1) (2m+3)(2m-3) (2) (-4x+5y)(4x+5y)

分析:要分清题目中哪个式子相当于公式中的a (相同的一项) ,哪个式子相当于公式中的b (互为相反数的一项)

2、利用乘法公式计算:

(1) 999×1001 (2)

分析:要利用完全平方公式,需具备完全平方公式的结构,所以999×1001可以转化为( )× ( ), 可以转化为( )×( )

3、利用乘法公式计算:

(1) (x+y+z)(x+y-z) (2) (a-2b+3c)(a+2b-3c)

三、学习体会

对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?

四、自我测试

1、下列计算是否正确,若不正确,请订正;

(1) (x+2)(2-x)=x2-4

(2) (2x+y2)(2x-y2)=2x2-y4

(3) (3x2+1)(3x2-1)=9x2-1

(4) (x+2)(x-3)=x2-6

2、利用乘法公式计算:

(1) (m+n)(m-m)+3n2 (2) (a+2b)(a-2b)(a2+4b4)

(3)1007×993 (4) (x+3)2-(x+2)(x-1)

4、先化简,再求值;

(-b+a)(a+b)+(a+b)2-2a2,其中a=3,b=

五、思维拓展

1、如果x2-y2=6,x+y=3,则x-y=

2、计算:20072-4014×2008+20082

3、计算:123462-12345×12347

汉屈群策,策屈群力。上面就是快回答给大家整理的8篇平方差公式教案,希望可以加深您对于写作平方差公式的相关认知。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。