作为一名专为他人授业解惑的人民教师,就难以避免地要准备教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?为了帮助大家更好的写作比例尺教学设计,快回答整理分享了14篇《比例尺》教案。
《比例尺》教案 篇一
通过本课的教学,我认为在教学中要注意以下几点:
一、生活经验与数学知识要自然融合
开始,从生活中引入学生熟悉的中国地图,让学生通过画教室的平面图,研究图上距离和实际距离的关系,进而理解和掌握比例尺的意义。但后一个的教学过程比前面的顺畅自然,因为后者更注重学生已有生活经验、已有数学知识和新学知识的融合。达到了旧知到新知的自然过渡,同时也促进了学生的主动发展。
实际距离缩小后画在图上是学生已有的生活经验,如何上升到比例尺这一新知识中来呢?首先,请同学们提问来表示图上距离和实际距离的关系,学生自然启用已有的数学知识“缩小了一定的倍数”,通过让同学计算出图上距离和实际距离的比,点明这个比就是今天要学的比例尺。这样设计的目的是让学生用已有的数学知识“缩小几倍、比的意义”为纽带,把原有的'生活经验“缩小后画在图上”和新知识“比例尺的意义”进行了融会贯通,做到了三者之间的自然融合。
新课标指出:数学教学中,应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。我想,这一过程也就是生活经验和新旧数学知识的融合过程,融合促进了学生的主动建构,提高了学生的应用和学习能力,实现了学生的生命发展。
二、教师的点拨与讲解要适时适度
新课标提倡把课堂还给学生,让学生成为课堂的主人,而教师只是教学活动的组织者、引导者和参与者。教师如何充当好这一角色呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的;教师既然是组织者、参与者,讲解和点拨又应是适时适度的。
在教学比例尺的意义时,由简单的画图到具体分析计算图上距离和实际距离关系的思维过程,同学们对生活问题数学化后,比例尺意义的揭示已是“万事具备,只欠东风”了,此时,教师的讲解成为必然。学生的学习因为教师适时的讲解有了自然过渡,实现了学生认知的和谐发展。
当然,教师的讲解和点拨还应是适度的。课堂上教师只是配角,是为学生的主动学习服务的,因此,教师的提问与讲解应具有启发性。
三、丰富了学生内心的情感世界
新的课程理念要求每一位教师树立“以人为本”的思想,在课堂教学中发挥情感教育的作用,以学生饱满的热情和积极的参与,而赢得课堂教学的高效益。本节课以学习小组为单位,教师给学生充分的时间,让他们探索、尝试、讨论、交流,教师仅仅是他们当中平等的一员。在师生互动、生生互动的过程中,学生体验到了探索的挫折与挑战、合作的效益与快乐、成功的喜悦与陶醉、事后的回顾与反思……这样的心理历程,使学生不但加深了对所学知识的认识,体验了探索的过程与方法,更增强了学生学好数学的自信心,这是培养学生终身学习的愿望与能力的有效手段。
四、对学生的理解要肯定和评价
以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生对数学的不同理解,又要尊重学生的数学思维成果。
对于求比例尺,我让学生用例题中的方法去解答,对于学生的解法只是一句话带过,没有让学生对自己的解法加以阐述,也没有对学生的解法进行合理的评价。这无疑是违背新课程标准的。要遵循学生学习数学的心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识、提高能力的同时,学会学习。
不足的地方:这方面的活动比较少,学生感到生疏。今后,在教学过程中,对有关这方面的活动要加强探究,让学生得到锻炼。
《比例尺》教案 篇二
设计说明
《数学课程标准》指出:数学教学必须激发学生的兴趣,调动学生的积极性,引发学生思考并动手实践,同时要注重培养学生解决问题的能力。
根据此理念本节课设计了以下教学环节:
1.设疑、激趣,引发探究欲望。
上课伊始,通过“中国地图”激发学生的学习兴趣,使学生产生探究新知的欲望,为进一步了解并理解比例尺做好铺垫。
2.操作、计算,探究比例尺的内涵。
因为名称的缘故,“比例尺”很容易被学生误认为是一种尺,所以在教学中,结合生活实际,引导学生通过操作、计算,逐步理解比例尺的意义,掌握比例尺的本质——是一个比,而不是一种尺。
3.测量、换算,灵活运用比例尺知识解决问题。
比例尺=图上距离÷实际距离,在应用比例尺知识解决实际问题时,常常根据图上距离、实际距离、比例尺中的任意两个量求第三个量,所以本节课的教学加强了灵活应用比例尺知识解决问题的尝试。
课前准备
教师准备
中国地图多媒体课件
学生准备
直尺
教学过程
第1课时认识比例尺
⊙激趣导入
1.创设情境,提出问题。
师:我们的祖国地域辽阔,拥有960万平方千米的土地,如此伟大的祖国,怎能不让我们感到自豪呢!今天老师把咱们的祖国搬进了课堂,你们猜是什么?(中国地图)
师:咦,960万平方千米的土地,为什么可以画在一张小小的纸上呢?通过观察,你发现了什么?
2.引入新知。
师:在现实生活中,有时需要把实际物体缩小或扩大若干倍以后画到图纸上。你能举出生活中这样的例子吗?你知道这是把实际物体扩大了还是缩小了呢?今天我们就来学习比例尺。
设计意图:从学生已有的生活经验导入新课,不仅有效地调动了学生学习的积极性,而且让学生在不知不觉中体验到比例尺的意义。
⊙新知探究
1.探究比例尺的意义。
(课件出示教材21页淘气和笑笑画的图)
(1)观察图片,判断其合理性。
师:观察这两幅图,你认为他们画得合理吗?先和同桌交流一下,然后汇报。
预设
生1:我认为淘气画得不合理,因为淘气画的这三条线段的长度基本上是相同的,在图上没有显示出三个地方到学校的。距离的不同。
生2:还是笑笑画得合理,她在图中标注了“1厘米表示100米”,让人看后对图意一目了然。
(2)揭示比例尺的意义。
师:笑笑用图上1厘米表示实际100米,真是太聪明了!我们把图上距离和实际距离的比叫作这幅图的比例尺。
板书:比例尺=
(3)体会比例尺产生的必要性。
学生自由交流比例尺在生活中的作用。
2.明确求比例尺的方法。
师:在笑笑画的图中,图上1厘米表示实际100米,根据你对比例尺意义的理解,你能说说怎样求比例尺吗?
预设
生1:应该先转换单位:100 m=10000 cm。
生2:根据比例尺=,求出这幅图的比例尺是1∶10000。
师小结:求比例尺时一定要先把图上距离与实际距离的单位统一,同时注意比例尺是一个比,它不带单位。
3.利用比例尺,根据给出的数据进行图上距离和实际距离的计算。
(再次出示教材21页笑笑画的图)学校的东北方向400 m处有一个社区活动中心。先算一算,再在笑笑的图中标出来。
(小组内交流讨论,个体汇报)
预设
生1:先算出图上距离,再画。
生2:400 m=40000 cm,40000÷10000=4(cm)。
生3:所以社区活动中心应画在学校的东北方向4 cm处。
4.认识线段比例尺。
师:(课件出示教材21页最后一幅图)我们打开各种地图,常常可以看到图上会附有一条注有数量的线段,你能说说它表示什么意思吗?
(同桌间交流、思考,个体汇报)
比例尺的教案 篇三
教学目标
1. 通过学习,初步了解比例尺的意义。
2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。
3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。
4.情感、态度、价值观:体会数学与日常生活的密切联系。
教学重、难点:
(1)理解比例尺的含义。
(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。
教具学具
小黑板、课件、备一幅地图
教学过程
一、导入新课
同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:
1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?
2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。
教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。
揭示课题:今天我们一起来学习比例尺的知识。
二、学习新课
1.学习比例尺的意义。
(1)动手操作
请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。
学生们计算并汇报,集体订正。
一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:
1、用几厘米表示8米和7米。
2、你设计的方案是图上距离比实际距离缩小了 多少倍?
3、算一算、每幅图的图上距离与实际距离的比。
同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。
请学生重复说一遍什么叫做比例尺。
板书:图上距离:实际距离=比例尺
请每个人算一算自己所画的教室的平面图的比例尺是多少。
(2)观察地图,自由交流。
课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的地方?
引导学生充分发表意见,教师辅助讲解:
1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。
(3)学习不同的比例尺。
课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?
在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?
补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。
(4)学习例1。
课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的单位不同该怎么办?
请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。
2.知识运用。
(1)即时训练。
学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。
集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。
(2)拓展训练。
课件出示下列四个问题:
1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。
2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)
3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?
4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。
请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。
3.教学例2。
多媒 图上距离 15cm 实际距离 450km
回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。
比例尺的教案 篇四
教学目标:
使学生理解的含义,会根据线段比例尺图上距离或实际距离。
教学重难点:
根据线段比例尺求图和实际距离
教学过程
一、导入新课
上节我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,除了数值比例尺外,还有线段比例尺呢?这就是我们这节课要学习的内容。
二、新课
1、线段比例尺是在图上附有一条注有数量线段,用来表示和地面上相对应的实际距离,同学们可以翻开教科书第51页,看右下角有一幅地图,地图的下面就有一条线段比例尺,它上面有0、50和100几个数,还注明了长度单位“千米”,这些数和单位表示什么意思呢?
2、如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米,再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?让学生说怎样列式。
50×5.5=275(千米)
3、你能不能把这个地图上的线段比例尺改写成数值比例尺?怎么改写?
三、课堂练习
完成练习十五的第4~8题
四、课堂小结
创意作业:
在地图上找出我们的家乡和北京,并计算出它们离多远。如果用50千米的线段比例尺,你能画出它们在图上的距离吗?同学们试一试。
比例尺的应用教学设计 篇五
教学目标:
1.经历读平面图,根据比例尺和图上距离解决简单问题的过程。
2.能读懂平面图,能根据比例尺解决和平面图上有关的实际问题。
3.体验数学与生活的联系,感受比例尺在生活中的广泛应用。
教学方案:
教学环节:
教学预设:
一、读平面图
1、教师谈话,说明一些场所也可以按比例画出它的平面图。
师:同学们,前面我们知道了可以按一定的比例画出一个物体表面的示意图。一所学校、一个公园、一个商场也可以按一定的比例画出它的平面图。
板书:平面图。
2、让学生读某小学的平面图,交流从图中了解到的信息。给学生充分交流不同信息的机会,教师可以作为参与者交流。
师:现在,请同学们打开书第54页,认真观察某小学的平面图。
给学生一点时间观察平面图,再交流。
师:谁来说说从这幅图上,你了解到什么?
学生可能回答:
这是某小学的整体设施平面图
平面图上画了教学楼、语音室,教学楼在学校的西北边,语音室在教学楼的西南方向。
办公楼在学校的东北方向,图书室在学校的东边,微机室在学校的东南边。
操场在学校的南方,花坛在操场的正北方向……
平面图的比例尺是1:2000。
3.让学生说一说比例尺1:2000表示什么意思。然后,教师介绍比例尺1:2000的两种表示方式,并板书出来。
师:谁知道比例尺1:2000是什么意思?
学生可能会说:
生:1:2000的意思是图上的1厘米表示实际的2000厘米。
师:说的很好!1:2000,比的前项是图上距离,比的后项是实际距离。
比例尺就是图上距离和实际距离的比。1:2000还可以写成不同的形式。
教师边说边板书:
比例尺=1:2000
或比例尺=
4、参照兔博士的话比例尺的一般意义,并板书比例尺的两种书写方式。
师:根据比例尺就是图上距离与实际距离的比,我们还可以得到比例尺的'一般表达式。
教师边说边板书:
图上距离:实际距离=比例尺或=比例尺
二、自主学习
1.提出:“求校园长的实际距离”的问题,师生合作实际测量后,让学生自主计算。
师:根据平面图上的比例尺,我们知道图上的1厘米,表示实际的2000厘米。想一想,如果要想知道校园长的实际距离,怎么办?
生:需要先量出校园长的图上距离。然后根据比例尺1:2000,就可以求出实际距离。
师:好,请同学们量一量平面图上的校园长是多少。
学生测量。
师:谁来汇报你测量的结果?
生:图中的校园长是10厘米。
板书:图上距离:10厘米
2.全班交流计算的过程和结果。最后说明:学校的长用“米”做单位比较合适,所以求出厘米数后,要除以100换算成米作单位。
师:校园长的实际距离到底是多少呢?请同学们试着算一算。
学生试算,教师巡视个别指导。
师:谁来说说你是怎样想的?
学生可能出现以下算法:
因为图上的1厘米表示实际的2000厘米,现在校园长图上距离是10厘米,实际距离就是10个2000厘米,用2000×10=20000(厘米)。
我用2000×10=20000(厘米),20000厘米=200米,所以校园长的实际距离是200米。
随学生的回答教师板书:
实际距离:2000×10=20000(厘米)=200米
如果学生没有换算单位或出现错误,教师给予提示。
3、提出:“求学校宽的实际距离”的问题。鼓励学生独立完成,然后交流,解释自己的计算过程和结果。
师:学校的长用“米”做单位比较合适,所以求出厘米数后,要除以100换算成米。
师:学校宽的实际距离是多少呢?请同学们自己测量出图上距离,并试着计算。
学生自主测量、计算,教师巡视并对有困难的学生进行指导。
师:谁来说一说你是怎么做的?计算的结果是多少?
生:我先量出宽的图上距离是6厘米,因为比例尺是1:2000,实际距离就是6个2000厘米,用2000×6=12000(厘米)=120(米)。
4、提出“求学校占地面积”的要求,学生算完后交流。
师:我们已经求出了校园长和宽的实际长度,你能计算出校园的占地面积吗?试一试。
学生计算后交流。答案:
200×120=24000(平方米)
三、尝试应用
1、提出教材试一试中的问题(1),先让学生讨论一下:求学校操场的面积,应该怎么办?然后自己解答,最后交流。
师:根据平面图和比例尺,我们可以算出校园长和宽、占地面积等。如果要求操场的面积,谁知道应该怎么办?
生:先测量图上操场的长和宽,再计算出操场长和宽的实际长度。最后,计算出操场的面积。
师:请大家自己完成。
学生自主测量、计算,教师巡视并对有困难的学生进行指导。然后,指名交流。
2、提出教材试一试中的问题(2),先让学生讨论一下:要在示意图上标出旗杆的位置,应该怎么办?使学生了解:应该先根据实际距离求出图上距离。
师:同学们真棒,根据平面图和比例尺解决计算问题。现在,老师提一个比较难的问题。在学校内距南墙30米、西墙100米的位置,竖着学校的旗杆。如果要在示意图上标出旗杆的位置,你知道应该怎么办吗?
生:应该先根据实际距离求出旗杆距南墙、西墙的图上距离,然后在图中测量、标出旗杆的位置。
3、学生尝试计算,然后交流计算的过程和结果。
师:说的很好!请大家先试着计算出旗杆距南墙、西墙的图上距离。
学生尝试计算,教师巡视,帮助学习有困难的学生。
师:谁来说一说你是怎么做的?
学生可能出现以下做法:
因为图上1厘米表示实际2000厘米。旗杆距南墙的实际距离是30米,30米中有几个2000厘米,图上距离就是几厘米。30米=3000厘米,3000÷2000=1.5,所以旗杆距南墙的图上距离就是1.5厘米。同理,旗杆距西墙的实际距离100米,100米=10000厘米,10000÷2000=5,图上距离就是5厘米。
因为=比例尺,所以图上距离=实际距离×比例尺。
30×=0.015米=1.5厘米
100×=0.05米=5厘米
第(2)种方法如果没有出现,不予介绍。
师:很好,同学们计算出了旗杆距南墙、西墙的距离。现在,在图中测量、标出旗杆的位置。完成后,同桌互相检查一下。
四、课堂练习
1、练一练第1题,先让学生说说“红红家住房平面图”所包含的信息,再独立完成各小题。
师:请同学们看练一练第1题,这是红红家住房的平面图。从图中你知道了哪些信息?
学生可能会说:
这幅平面图的比例尺是1:200
红红家的客厅在阳面。
在红红家的东南角、西北角各有一个卧室。
师:比例尺1:200是什么意思?
生:就是图上的1厘米表示实际200厘米。
师:请同学们独立完成(2)(3)两个问题。
学生独立完成练习,教师巡视并指导学习有困难的学生。
五、课外延伸
2、练一练第2题,由学生课外独立完成。
师:我们一起解决了红红家住房中的一些问题,请同学们课下用1:200的比例尺画出你自己的卧室的平面图。
比例尺的教案 篇六
教学目标:
1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学准备:
多媒体课件。
教学过程:
一、展示目标,引入本课。
二、探究新知,意义建构
1、看一看
下面几幅地图的比例尺分别是多少。
①中华人民共和国这幅地图的比例尺是多少?(1:6000000)
②安庆市这幅地图的比例尺是多少?(1:2500000)
③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)
2、说一说
(1)比例尺1:100表示什么意思呢?
生:图上1厘米长的线段表示实际距离100厘米。
(2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。
(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。
3、议一议
(1)什么是比例尺呢?
图上距离和实际距离的比,叫做比例尺。
(2)比例尺怎样表示呢?
比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)
(3)比例尺有什么特征呢?
①比例尺与一般的尺子不同,它是一个比,不带计量单位;
②图上距离和实际距离的单位是统一的;
③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。
【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。
三、拓展延伸,巩固新知
1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?
70:3.5=700:35=20:1
答:这幅设计图纸的比例尺是20:1。
2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)
3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?
32×6000000=192000000(厘米)192000000厘米=1920(千米)
答:广州到北京实际距离是1920千米。
五、总结新课,整理知识
通过今天的学习,你有什么收获呢?
比例尺教学设计 篇七
教学内容:
数学六年级下册第48页“练一练”和练习十一的第1、2题 教学目标:
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。
2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。 教学重点:
使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。
教学难点:
使学生理解比例尺的意义,会求一幅图的比例尺。
设计理念:
本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
一、设置情境,比较引入
演示:出示两张大小不同的中国地图。
学生观察
师:通过观察,你发现了什么?什么变了?什么没变? 学生回答。(可能出现:形状没变、大小变了。)
师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。
(板书课题:比例尺)
二、自主探究,认识新知
1、出示例6。
学生读题,理解题意,尝试写出两个数量的比。
师:题中要我们写几个比?这两个比分别是哪两个数量的比? 什么是图上距离?
什么是实际距离?
2、 认识探索写图上距离与实际距离比的方法。
师:图上距离与实际距离的单位不同,怎样写出它们的比? 学生交流,明确方法:
把图上距离与实际距离的单位统一成相同单位,写出比后再化简。 (学生独立完成后,交流写出的比,强调要把写出的比化简。)
3、比例尺的意义及求比例尺的方法
师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。
题中草坪平面图的比例尺是多少?
师:怎样求一幅图的比例尺?
学生在小组里说说,再全班交流。
根据学生的回答,相机板书:
图上距离:实际距离=比例尺
4、进一步理解比例尺的实际意义。
师:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。你是怎样理解这幅图的比例尺的?
学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。
5、认识线段比例尺
比例尺1:1000还可以用下面这样的形式来表示。
0 102030米 师介绍线段比例尺。
问:图上1厘米表示实际多少米?3厘米呢?
指出像这样的比例尺通常叫做线段比例尺。
四、独立练习,巩固提高
1、做“练一练”第1题。
独立相互说,指名说。先说说每幅图中比例尺的实际意义。
2、做“练一练”第2题。
学生各自测量、计算,再交流思考过程。
3、练习十一第1题。
学生独立解答,巩固比例尺计算的基本思考方法。
五、总结评价,生活延伸
1、你学会了什么?你有哪些收获和体会?
2、在生活中找找,哪些会用到比例尺?
板书设计:
比例尺的认识
图上距离:实际距离=比例尺
1:1000
0 102030米
《认识比例尺》教学反思
认识比例尺是在学习比和比例的意义及其基本性质的基础上进行教学的。通过本课的学习,让学生理解比例尺的意义,学会求平面图的比例尺。本课的重点是让学生理解比例尺的意义,学会求比例尺。
在引入阶段,我选取了学生们非常熟悉的典型的感知材料:出示两幅比例尺不同的中国地图,让学生仔细观察:“什么变了,什么没变?”进而抓住比例尺的特性:图形的大小可以随意改变,但形状不能改变。激发了学生的好奇心和求知欲。
在教学例6时,以“这里比例尺1:1000是什么意思”的提问引起学生猜想、议论。为后面学习计算实际距离、图上距离打下知识准备。最后归纳出比例尺的概念。
在教学数值比例尺后,又引导学生学习了线段比例尺,让学生小组讨论,认识到两者之间的区别和练习,对比例尺的知识有更深的认识,为后面的有关比例尺计算的实际问题做了很好的铺垫。
探究比例尺的实际应用时,时间比较紧张,学生虽基本完成了这个问题,但来不及反馈,导致基础知识和基本技能的落实还不够扎实。在今后的教学中,应尽量把课堂交给学生,让学生成为课堂的主体。
《比例尺》教案 篇八
上课解决方案
教案设计
设计说明
本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:
1.面向全体,重视学生对基本解题方法的理解。
在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。
2.拓展思维,重视学生对解题策略个性化和多样化的体验。
在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。
3.渗透思想,引导学生实现解题策略的优化。
在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。
课前准备
教师准备 PPT课件
学生准备 地图
教学过程
⊙复习导入
1.复习提问。
(1)什么是比例尺?关于比例尺你了解了哪些内容?
(引导学生从比例尺意义的认识及数值比例尺和线段比例尺的认识等方面回答)
(2)说一说下列比例尺表示的具体意义。
①比例尺1∶250000。
②比例尺80∶1。
③比例尺
。
(引导学生交流后说一说每种比例尺的实际意义)
2.导入新课。
通过交流,可以看出同学们对比例尺的相关知识掌握得很好,这节课我们就一起来探究如何应用比例尺的知识解决实际问题。(板书:比例尺的应用)
设计意图:全面回顾比例尺的相关知识,为学生应用比例尺的知识解决问题奠定基础。
⊙探究新知
1.教学例2,根据比例尺和图上距离求实际距离。
(1)课件出示教材54页例2。
(2)审题,找出已知条件和所求问题。
预设
生:本题已知比例尺是1∶400000,图上的`长度是7.8 cm,求实际长度是多少。
(3)思考、交流:如何求从苹果园站至四惠东站的实际长度?
预设
生1:先设从苹果园站至四惠东站的实际长度是x cm,再根据比例尺的意义,列出比例式,求出实际长度是多少厘米。
生2:根据比例尺的意义,直接用图上长度7.8乘比例尺中的400000,求出实际长度是多少厘米。
生3:根据比例尺的意义计算:400000÷100000=4(km),7.8×4=31.2(km)。
(4)重点理解基本解法。
问题1:为什么设的实际长度要以“cm”为单位?
问题2:列比例的依据是什么?
问题3:“400000”表示什么?
预设
生1:设的实际长度以“cm”为单位,是因为图上的长度单位是“cm”,只有图上的长度单位和实际的长度单位统一了,才能计算出正确的结果。
生2:列比例的依据是“=比例尺”。
生3:“400000”表示图上1 cm的长度相当于实际400000 cm的长度。
(5)学生独立用解比例的方法解决问题后,指名板演并订正。
比例尺的教案 篇九
教学目标
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点
从不同的角度理解比例尺的意义。
教学准备
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
教学过程
一、 导入激趣
师:同学们,你们见过这个成语吗?(板书:以――当――)
生:以一当十。(指名回答)
师:那这样的话以三当几?以七当几?你是怎么算的?
生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)
师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?
生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。
师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。
二、 意义构建
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米 。 )
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3) 标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)
让生自学课本第30页什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
三、实际应用
(一)基本运用(小黑板出示)
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是。
(1)图上宽与图上长的比是1∶2 ( )
(2)图上宽与实际宽的比1/400是 ( )
(3)图上面积与实际面积的比是1 ∶160000( )
(4)实际长与图上长的比是400 ∶1 ( )
(5)图上长与实际宽的比是1 ∶200 ( )
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的 距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
四、课堂小结
师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?通过本节课的学习你知道什么叫比例尺了吗?如何求一幅图的比例尺?图上距离?实际距离呢?
《比例尺》教案 篇十
教学目标
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点
从不同的角度理解比例尺的意义。
教学准备
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法学法
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
教学过程
一、 导入激趣
师:同学们,你们见过这个成语吗?(板书:以――当――)
生:以一当十。(指名回答)
师:那这样的话以三当几?以七当几?你是怎么算的?
生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)
师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?
生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。
师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。
二、 意义构建
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米 。 )
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的'长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3) 标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)
让生自学课本第30页什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
三、实际应用
(一)基本运用(小黑板出示)
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是。
(1)图上宽与图上长的比是1∶2 ( )
(2)图上宽与实际宽的比1/400是 ( )
(3)图上面积与实际面积的比是1 ∶160000( )
(4)实际长与图上长的比是400 ∶1 ( )
(5)图上长与实际宽的比是1 ∶200 ( )
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的 距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
四、课堂小结
师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?通过本节课的学习你知道什么叫比例尺了吗?如何求一幅图的比例尺?图上距离?实际距离呢?
五、布置作业(略)
六、板书设计
比例尺
以一当十
比
学生的图 1:100 或分数 图上距离:实际距离=比例尺
(贴) 1:200 或分数 前项一般为1
(强调比例尺的前项一般为1)
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
《比例尺》教案 第十一篇
一、教学目标:
1、使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。
2、使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。
二、教学重点:
求图上距离和实际距离。
三、教学难点:
求实际距离。
四、教学过程:
(一)旧知铺垫。
1、什么叫做比例尺?
板书:图上距离:实际距离=比例尺
2、说一说下列各比例尺表示的具体意义。
(1)比例尺1:45000。
(2)比例尺80:1。
(3)0——40㎞。
3、教学例2。
(1)出示课文例题及插图。
(2)说一说从中你得到哪些信息。
已知条件:
① 1号线的图上长度是10㎝。
② 这幅地图的比例尺1:500000。
所求问题:1号线的实际长度是多少?
(3)你认为可以用什么方法解决问题?
①学生尝试解决问题。
②教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。
③汇报解答情况。
方程解:
解:设地铁1号线的实际长度是x厘米。
根据图上距离:实际距离=比例尺,可以例比例式解答。
10/x=1/500000
x=10500000(问:根据什么?)
根据比例的基本性质。
x=5000000
5000000㎝=50㎞
算术解:
根据图上距离除以实际距离等于比例尺,得出:实际距离等于图上距离除以比例尺。
101/500000=10500000=5000000(㎝)5000000㎝=50㎞
4、教学例3。
(1)出示例题,学生了解题目要求。
(2)讨论:你想怎样画?
通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。
① 确定比例尺;
② 求出图上的'距离;
③ 画出操场的平面图。
(3)小组同学合作,解决问题。
学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。
(4)汇报,交流。
比例尺的教案 第十二篇
教学资料:
《义务教育课程标准实验教科书数学》(人教版)六年级下册第47、48页,练习八第1—3题。
设计理念:
数学程标准指出,“数学课程不仅仅要思考数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能构成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。
学情与教材分析:
“比例的应用”是在学生已经学习了比和比例的好处、比例的基本性质之后的一个教学资料。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵――图上距离与实际距离的比,认识两种不同的比例尺――数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质――比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式――前项或后项为1,而产生的计算上的易错点,都是教学中需要个性关注的。
教学目标:
1、在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。
2、在操作、观察、思考、归纳等学习活动中理解比例尺的好处,正确计算比例尺,了解比例尺在实际生活中的各种用途。
3、感受数学在解决问题中的作用,培养亲近数学的良好情感。
教学准备:
多媒体课件
教学重点:
理解比例尺的好处
教学难点:
把线段比例转换成数值比例尺
教学过程:
一、激发兴趣,引入比例尺
(脑筋急转弯)
师:同学们,你们必须去过漳州,那你们坐车从华安到漳州大约需要多长时间?(1个多小时),但是有只蚂蚁却只用了4秒钟。你明白是怎样回事吗?
生猜:蚂蚁可能在从华安到漳州的地图上爬。
师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)
师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?
师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)
请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们这天要学习的资料:比例尺(板书课题)
【设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,通过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,通过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的资料。】
二、自主学习,认识比例尺
1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本48页,自学48页的资料。
2、揭示比例尺的好处。
你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)
前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)
那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?
你能说说这些比例尺的好处吗?
请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下
比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大
【设计意图:学生自学可能因为自身学习潜力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮忙学生清晰把握。】
3、练习:
明白了什么是比例尺,如果我想求一幅图的比例尺,那要怎样办呢?老师给你们数据你们会求出一幅图的比例尺吗?
①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?
②、一栋楼房东西方向长40m,在图纸上的长度是50cm、这幅图纸的比例尺是多少
③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?
注意:单位统一
要化简结果不带单位(因为它表示的是两个量之间的关系)
【设计意图:在学生理解比例尺的好处之后立刻呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际好处,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体好处。】
4、认识放大比例尺
观察这三个比例尺,你有什么发现?(前项为1)也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺(课件出示一些精密零件的图纸)
看,把比例尺读出来,你有什么发现?(选一个说好处)
小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。(板书)通常状况下,为了计算的方便,把比例尺写成前项或后项是1的比。
5、认识线段比例尺
刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺(出示线段比例尺)它与数值比例尺有什么不同?
学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?
用线段来表示图上距离与实际距离的关系,这叫做线段比例尺
区别:形式不同,但都表示图上距离与实际距离的倍数关系
小结:比例尺根据表现形式的不同分为数值比例尺和线段比例尺。(板书)
6、把上面的线段比例尺改写成数值比例尺
(1)这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?
(2)1厘米:50千米=1厘米:5000000厘米=1:5000000
(3)根据数值比例尺标出线段比例尺
小结:线段比例尺和数值比例尺是比例尺的两种基本形式、它们之间能够进行转换、把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就能够了、
【设计意图:在具体情景中,通过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的好处以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。】
三、巩固练习,灵活运用
(一)填一填
1、在比例尺是1:2000的地图上,图上距离1厘米表示实际距离()厘米或()米
2、在比例尺是1:250000的地图上,图上距离1厘米表示实际距离(千米。
3、在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍,把这个数值比例尺该成线段比例尺是
(二)辨一辨
1、所有的比例尺的前项都是1。()
2把一个电脑零件放大到原先的100倍画在图纸上,应选用1:100的比例尺。()
3、比例尺就是一把尺子。()
4、一幅地图的比例尺是1:50000厘米。()
5、一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。()
(三)、选一选
1、用图上距离5厘米,表示实际距离200米,这幅图的比例尺是()
5:200B、C、1:4000厘米
2、长4厘米的零件,画在图纸上是40毫米,这幅图的比例尺是()
1:10B、10:1C、1:1D、1
3、线段比例尺改成数值比例尺是()
A、1:23B、1:2300000C、1:2300000km
【设计意图:通过填一填、辨一辨、选一选等不同形式的练习让学生体会比例尺在生活中的应用,能够解决实际问题。同时通过具体情景,感受数学与生活的紧密联系】
四、课后延伸
选取适宜的比例尺画图
红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按必须的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?(1:1000、1:5001:10000)
结论:一幅图的比例尺由纸张的大小来决定。
【设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性、这样让孩子在获得知识的同时,培养了潜力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。】
五、谈学后体会。这节课你学到了什么?
【设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。】
《比例尺》教案 第十三篇
教学目标
1、能根据地图推算实践以及根据实距绘制平面图,培养学生运用所学知识技能解决实际问题的能力。
2、培养学生自主探究自主探究、合和交流的能力。
3、感受数学与生活的联系,体验学习数学的价值,增强学习数学的情感。
教学重点:理解比例尺的含义,能根据比例尺求图上距离或实际距离。
教学准备:理解比例尺的含义,能根据比例尺求图上距离或实际距离。
课时分配:共2课时。第1课时
教学时间:
教学过程
一、创设情境,引出问题
师:通过课前的交流,我知道有不少同学到外地旅游过。这是因为现在的生活水平高了,有这方面的条件。最近几年,我们家也会利用节假日出外游玩,不过,我个习惯,到哪个城市,就想找那个城市的地图看看。请同学们猜一猜:王老师主要是想从地图上了解哪些方面的信息?
估计学生可能猜出以下几种:看这个城市有哪几个景点,景点在这个城市的什么位置?看地图上的比例尺等,教师适时追问:①地图上怎么确定方向?②根据地图上的比例尺还能了解到什么?
二、结合实际,探究新知
1、看地图推算实距。
教师出示南京市地图放在展示台上。
(1)指名读出比例尺,并说说所表示的意思。
(2)找出“雨花台”和“中山陵”2个景点,让学生辨认中山陵在雨花台的`哪个方向?
师:在地图上,这2个景点之间的实际距离还不到我一根手指那么长,而生活中它们之间的距离还很远的,那么怎样知道2点之间的实际距离呢?
(3)指名测量图上距离,其它学生记录并列式计算实际距离。(4)集体交流计算方法。
对于用到方程的方法解答的步骤要板书并予以强调。要求学生说清各种算法的算理。估计会出现多种算法,课堂上给予充分的时间交流。
师:请同学们要注意,刚才计算出来的数是两个景点间的直线距离,二实际生活中,这两点间没有直来直去的路,而要绕弯走,因此实际走的路程要比实际距离来得多,我们现在研究的是两点间的直线距离。师:请同学们来总结一下,在刚才的测量与计算中,应该注意一些什么?
2、练习:完成教材第49页例2
学生独立完成,板书交流。
10/x=1/500000
X=10×500000
X=5000000
5000000厘米=5千米
3、根据比例尺做平面图。
出示例3:学校要建一个长80米,宽60米的长方形操场,请画出操场的平面图。
(1)知道学生分组讨论。(2)你觉得应该怎么办?
小组汇报:这道题没有比例尺,要画出平面图形,应该先确定比例尺。
(3)很好,这是解决这道题的关键。用什么样的比例出尺比较合适呢?
(4)根据比例尺确定图上的操场的长和宽。
下面大家以1:1000为比例尺,算一算操场在平面图上的长和宽。
80米=8000厘米60米=6000厘米
8:8000=1:1000 6:6000=1:1000
(5)让学生按正确的数据,做出图形。
(6)下面同学们再试一试,先确定线段比例尺,看能不能解决。
(7)引导学生总结根据比例尺做平面图形的一般方法。
4、小结并板书课题:
请同学们回顾一下刚才的学习过程,不管是看地图还是画地图都要用到什么知识?这说明比例尺在我们的生活、工作中是很有用的,因此,我们不仅要知道它的意义,还要会利用它解决一些实际问题。
三、拓展与练习
1、请同学们想一想:在我们的生活、工作中,你还知道哪些地方会用到比例尺?
2、我校明年要扩建一个大操场,计划长为120米,宽为80米,请你根据图纸的大小,从下面选出一个合适的比例尺,画出它的平面图。
①1:500 ②1:600 ③1:800
板书设计: 比例尺的应用
80米=8000厘米 60米=6000厘米
8:8000=1:1000 6:6000=1:1000
《比例尺》教案 第十四篇
教学内容:北师大版小学数学第十二册第二单元第30-31页。
教学目标:
1.让同学在实践活动中体验生活中需要比例尺。
2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。
教学重点:正确理解比例尺的含义。教学难点:运用比例尺的有关知识,通过丈量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备多媒体教学过程:
一、独立探究、合作生成
教师:请同学们在自身纸上画出长9米,宽7米的教室地面来。
同学1
有同学会发出质疑)哪有那么大的本子?不够画怎么办?
同学2:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?
同学:在图的右下方有“比例尺1:100”
教师:观察真仔细!比例尺1:100是什么意思?
1同学讨论。
2同学汇报:
同学1:图上1厘米长的线段表示实际100厘米。
同学2:图上距离是实际距离的1/100。
同学2:表示实际距离是图上距离的100倍。
3揭示比例尺的意义。
教师:比例尺是表示图上距离与实际距离的'比,这就是今天要学习的新知识——比例尺(板书课题)
二、自然生成、进行应用
1教师补充板书:图上距离∶实际距离=比例尺
图上距离/实际距离=比例尺
2教师:你们在什么地方看到过比例尺?
同学1:在中国地图上。
同学:在世界地图上。
同学:在房屋设计图上。
……
2教师:比例尺1∶300是什么意思?(注重意思的多样化)
同学交流(略)
3认识比例尺特征:
(1)课件出示中国地图的比例尺、世界地图的比例尺……
教师:通过观察,你们发现比例尺有什么特点?
同学:地图上的比例尺一般写成前项是1的比
4、运用知识,尝试解决问题:
教师:现在请大家量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。
算一算笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。
(1) 同学独立完成。
(2) 汇报算法
同学1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米
同学2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米
同学3:卧室的实际面积是5×4=20平方米
三、解决问题、巩固提高
1、算出笑笑家的总面积是多少平方米?
2、在家长卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。
3按比例尺是1:200,画出我们教室的平面图。
四、总结深化、活化知识
这节课大家有哪些收获?
五、研究性作业
1完成第30页的考虑题。
2、试画自身家庭的住宅平面图,并计算一下每个房间的面积。
旧书不厌百回读,熟读精思子自知。上面就是快回答给大家整理的14篇《比例尺》教案,希望可以加深您对于写作比例尺教学设计的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。