作为一位兢兢业业的人民教师,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。教案应该怎么写才好呢?下面的7篇《四边形》教案是由快回答精心整理的四边形范文模板,欢迎阅读参考。
《四边形》教案 篇一
【学习目标】
1、能运用勾股定理解决生活中与直角三角形有关的问题;
2、能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3、进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长。
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形、在水池正中央有一根新生的芦苇,它高出水面1尺、如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面、请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高205米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1、《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2、一种盛饮料的'圆柱形杯(如图),测得内部地面半径为2、5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4、6cm,问吸管需要多长?
【反馈练习】
1、(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km;
2、如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A、20cm B、10cm C、14cm D、无法确定
3、如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2、7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1、中线倍长;
2、作直角三角形斜边中线;
3、构造中位线;
4、构造中心对称全等三角形等;
5、熟悉以下基本图形,基本结论:
边形 篇二
教学目标:
1.学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。
2.学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3.学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点、难点:
掌握平行四边形的基本特征。
教学资源:
吸管、小棒、钉子板、平行四边形纸片、多媒体课件、实物投影仪等。
教学过程:
一、生活导入
1.出示例1的图片,你能在这些生活场景中找到以前学过的平面图形吗?(重点可让学生上台指一指平行四边形)
2.你能说说生活中还有哪些地方能看到平行四边形吗?(吊车、活动衣架、风筝等)
3.今天我们继续研究平行四边形。
二、探究特点
1.你能想办法做出一个平行四边形吗? 用你手边的材料试一试
2.在小组里交流你是怎样做的。选出代表向全班汇报
3.根据你的成功体会想想平行四边形可能有哪些特征,并在小组里交流,说说你是怎样发现的。
4.全班交流,教师注意做适当总结、板书
如:两组对边分别平行并且相等;对角相等:内角和是360°等
三、认识高、底
1.出示一张平行四边形的地图,如果要在两条平行路之间修地下管道,你能找出最短的距离,并量一量吗?
说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高(h),这条对边是平行四边形的底(a)。
2.可画多少条这样的高?为什么?(一组平行线之间的距离处处相等)
3.你能画出另一组对边上的高,并量一量吗?
4.试一试:指一指高垂直于哪条边,量出每个平行四边形的底和高各是多少厘米。
5.想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标记。
四、练习提高
1.想想做做1,哪些图形是平行四边形,为什么。
2.想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。
3.想想做做3,用七巧板中的3块拼成一个平行四边形。
出示,你能移动其中的一块将它改拼成长方形吗?
4.想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。
5.想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。
五、阅读调查
自主阅读“你知道吗?”,再到生活中去找找类似的例子。
六、全课小结
今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?
边形 篇三
教学建议
1.教材分析
(1)知识结构:
(2)重点和难点分析:
重点:的有关概念及内角和定理。因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:的概念及不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。
2.教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决。结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
一、素质教育目标
(一)知识教学点
1.使学生掌握的有关概念及的内角和外角和定理。
2.了解的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2.通过推导内角和定理,对学生渗透化归思想。
3.会根据比较简单的条件画出指定的。
4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、重点·难点·疑点及解决办法
1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题。
2.教学难点:理解的有关概念中的一些细节问题;不稳定性的理解和应用。
3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第一课时
七、教学步骤
【复习引入】
在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一
章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题。
【引入新课】
用投影仪打出课前画好的教材中P119的图。
师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).
【讲解新课】
1.的有关概念
结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).
(4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系。
(5)强调的表示方法,一定要按顶点顺序书写如图4—1.
(6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.
2.内角和定理
教师问:
(1)在图4-3中对角线AC把ABCD分成几个三角形?
(2)在图4-6中两条对角线AC和BD把分成几个三角形?
(3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形。
我们知道,三角形内角和等于180°,那么的内角和就等于:
①2×180°=360°如图4—6;
②4×180°-360°=360°如图4-7.
例1 已知:如图4—8,直线 于B、 于C.
求证:(1) ; (2) .
本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。
【总结、扩展】
1.的有关概念。
2.对角线的作用。
3.内角和定理。
八、布置作业
教材P128中1(1)、2、 3.
九、板书设计
(一)
有关概念
内角和
例1
十、随堂练习
教材P122中1、2、3.
边形 篇四
一、教材分析
是在前面“空间与图形”的基础上进行教学的,通过找一找,分一分,围一围等系列活动,充分感知四边形,抽象出四边形的特征,为今后进一步学习平行四边形、梯形以及平面图形的周长等打下基础。本节课是四边形这一单元的第一课时,教材从学生的生活经验出发,让他们通过观察、操作、有条理的思考和交流等活动,丰富他们对四边形的感性认识,经历从现实空间抽象出四边形的过程;又通过分类活动,了解不同四边形各自的特性,加深对长方形和正方形的认识。从而获得鲜明、生动和形象的认识,进而形成表象,发展空间观念。
二、学生分析
1、在一、二年级时学生已经初步认识了长方形、正方形、三角形、圆形,锐角、直角和钝角这些几何图形,有一定的知识积累,形成了一定的表象。
2、学生学习过简单的分类,但是这次的分类标准以学生来看有些抽象,学生可能受以往经验的限制而不知道从何下手进行分类,。
3、学生以前初步认识过长方形和正方形边的特征,这节课上要在以前的基础上更加全面地认识长方形和正方形的特征。
4、本节课设计的学习活动如分一分、比一比、量一量、围一围等一方面让学生经历知识形成过程,另一方面符合学生好动好玩的年龄特点,利于孩子们的学习兴趣培养。
三、学习目标
1、通过学习活动,学生能直观感知四边形,能区分和辨认四边形;进一步认识长方形和正方形,掌握它们边和角的特征。
2、学会按一定的顺序观察,有针对性的进行比较,有条理的进行思考,能够通过观察四边形,从中抽象概括出四边形的特征。
3、学生能感受四边形在生活中的广泛应用,积极参与找图形、分类等活动,更有兴趣地学习数学。
教学重点:
认识四边形的特征,能区分和辨认四边形,加深对长方形和正方形的认识。
教具准备:
课件 例1当中的图形教具一套
学具准备:
图形学具 钉子板 皮筋 三角板
四、教学过程
一、谈话导入
今年我们国家举办了一场盛大的体育比赛,你知道是什么吗?(奥运会)
老师这儿有一些用平面图形拼成的运动图案,你知道他们在干什么吗?
(踢足球、骑自行车、举重)
[设计意图:看拼图猜运动项目,激发学生的学习兴趣。]
二、实践探究
活动一:从现实生活中抽象出几何图形,并认识四边形。
1、其实,图形在我们的生活中是很常见的,下面就让我们一同走进光明小学的校园,找一找校园中都有哪些图形。
师:请大家按照一定的顺序来观察。
谁能说一说你在什么位置找到了什么图形?(根据学生汇报抽象出图形。)
师:我们找出了这么多图形,你觉得这幅图上那种图形最多?
生:正方形、长方形……
师:有同学说正方形最多,还有同学说长方形最多,如果让我说呀,我觉得“四边形”最多。(板书课题“四边形)
你认为什么样的图形是四边形吗?(让学生先指一个)
指着刚才学生指出的图形问其他同学,这个图形是不是四边形。
(听取正反两方同学意见,并帮学生确认这就是四边形。)
还有吗?(师生辨析并找出 )
2、观察一下我们找出的四边形,它们有什么共同特点?
(师生共同归纳并板书:有四条直的边,有四个角。)
[设计意图:让学生经历从现实空间中抽象出几何图形的过程。学生说正方形、长方形最多,老师说四边形最多,跟学生原有的概念之间形成认知冲突,通过学生的观察、比较,以及师生之间的交流,使学生逐步明晰原来长方形、正方形等都属于四边形,最后总结归纳出四边形的特征。]
活动二:从众多图形中寻找四边形。
现在我们已经知道四边形的特征了,你能很快地从众多图形中找出四边形吗?拿出学具,把是四边形的图形挑出来。(书上35页例1)
(共同反馈选出的四边形是否正确。)
[设计意图:根据四边形的特征,从众多图形中辨认四边形,进一步加深对四边形特征的认识。]
活动三:把四边形进行分类,通过分类了解不同四边形特征,加深长方形、正方形的认识。
刚才我们已经认识了四边形,而且能从众多图形中找出四边形,实际上四边形是一个大家庭,里面有很多成员,,你们能不能把四边形分分类。
同桌合作把四边形分分类。分之前想一想,你按什么分的?
(预设:下面是可能出现的分类情况。)
(当出现第一种分法时,让学生通过比一比、折一折或量一量的方法来探索长方形、正方形的特征。)
[设计意图:通过分类对不同的四边形各自的特性有所了解,特别是加深对长方形和正方形的认识]
三、小结:
这节课你有什么收获?(今天我们认识了四边形,知道了四边形有四条边、有四个角,还知道了长方形对边相等,四个角都是直角;正方形四条边都相等,四个角都是直角。)
四、练习
1、下面我们就运用今天所学的知识来做一个小游戏,拿出你的钉子板和皮筋,按要求围四边形。
○1围一个四个角都是直角的四边形
○2围一个没有直角的四边形
○3围一个上下对边相等,左右对边也相等的四边形
○4围一个四条边都不相等的四边形
2、课后请同学们留心观察,在那些地方还可以见到四边形?
[设计意图:分类时,让学生从图形中找特征,练习时再让学生根据图形的特征形成表象,围出四边形。通过游戏设计练习,让学生在轻松愉快中学习、结束全课,从点滴培养他们热爱学习热爱数学的情绪体验。]
边形 篇五
本单元教学平行四边形和梯形的特点以及它们的高。学生在第一学段直观认识了平行四边形,而梯形则是第一次学习。全单元的内容分成两部分编排: 先教学平行四边形,再教学梯形。编写的一篇“你知道吗”介绍了平行四边形容易变形的特性及其在日常生活中的应用。安排的一道思考题让学生体会应用图形的平移和旋转可以把平行四边形剪拼成长方形、把梯形剪拼成长方形、把长方形剪拼成三角形。
1 让学生通过“做”图形发现平行四边形和梯形的特点。
《标准》要求学生“通过观察、操作,认识平行四边形和梯形”。短短一句话,指出了学生学习图形特征的方法和途径: 要以发现为主,而不是仅*接受。
(1) 第43页例题要求学生凭已有的直廴鲜断氚旆ā白觥币桓銎叫兴谋咝危亲龅姆椒ㄒ欢ê芏啵滩睦锍氏值闹皇瞧渲械囊徊糠郑芸赡芑褂斜鸬淖龇ā!白觥蓖夹蔚哪康氖翘寤崞叫兴谋咝蔚奶氐悖萄币⒁馑牡悖?/span>
① 课前要有充分的物质准备,如小棒、钉子板、方格纸……这些材料可以是教师准备的,也可以是学生准备的。有些材料是预设的,有些材料是教学中即时想到的。
② 在做中发现特征,要让学生说说做的体会。“做”图形的目的是感受图形的形状特征,所以,要组织学生交流做法与思考。如用小棒摆平行四边形,上、下两根小棒一样长,左、右两根小棒也一样长。在方格纸上画平行四边形,上、下两条边互相平行,左、右两条边也互相平行……
③ 要抓住平行四边形的主要特征进行教学。平行四边形有许多特点,如对角相等、邻角和是180°等。例题的教学目的是使学生建立平行四边形的概念,所以要抓主要特点——两组对边分别平行,两组对边长度分别相等。至于其他特点,不必提出过多的要求。
两组对边分别平行是平行四边形的本质特征,必须使学生充分体会。不仅凭眼睛看,还要用画平行线的工具和方法进行验证。两组对边长度分别相等是平行四边形的重要特点,在以后计算面积时经常用到。也要让学生通过度量发现或验证。
④ 要促进学生在交流中集思广益、互补共享。每个学生的发现往往是点滴的,用小棒摆容易发现对边相等,不注意对边平行;用直尺画容易体会对边平行,不注意长度相等。因此,相互倾听、相互评价、相互吸收、共享发现成果尤为必要。听听别人的发现,看看自己“做”的平行四边形是不是也这样,就能做到互补共享。教师参与学生一起交流,要帮助学生提高语言水平,如把上、下两条边互相平行,左、右两条边互相平行概括地说成两组对边分别平行。
(2) 在活动中体会长方形和平行四边形的关系,进一步认识这两种图形。“想想做做”第3、4题都是把一个平行四边形通过“分——移——拼”的活动变成一个长方形,让学生一方面体会到平行四边形和长方形的形状不相同,另一方面体会到变化前后的两个图形的面积相同。这些都为以后探索平行四边形面积的计算方法作了准备。第6题把4根饮料管先串成一个长方形,再拉成一个平行四边形。这些操作活动帮助学生发现长方形和平行四边形都是四边形,两组对边都互相平行且长度相等。它们的不同点主要表现在四个角上。
(3) 第一次教学梯形,先让学生观察屋顶的一个面、梯子、清洁箱的抛物口、足球门的侧面,形成对梯形的直观感知。然后通过“做”梯形体会它的特点。教学线索和主要活动与平行四边形基本相同,仅有两点变化: 一是“白菜”卡通的提问方式变了,不是问梯形有什么特点,而是问“梯形与平行四边形比较,有什么区别”;二是多了“辣椒”卡通在回答问题。这些变化是引导学生寻找梯形的本质特征,帮助他们建立准确的梯形概念。
学生有想办法“做”出一个平行四边形的活动体验,现在“做”一个梯形,教学可以放得更开一些。如做的材料自己寻找、做的方法自己设计,并要求学生通过做了解梯形的特点。在交流梯形的特点时,要紧扣教材中的问题进行,突出梯形只有一组对边平行。
2 精心设计高的教学。
四年级(上册)教学平行的时候,曾经让学生在两条互相平行的直线中间画几条与两条直线都垂直的线段,通过度量还发现了画出的所有垂直线段长度都相等。那时候让学生做这道题的目的是体会平行与垂直是不同的位置关系。并通过平行线之间的垂直线段长度相等,体会两条平行的直线永远不会相交。这道题又可以成为本单元教学平行四边形和梯形的高的起点。
(1) 平行四边形有两组互相平行的对边,有两条长度不等的高。教材把两条高分两步教学,先讲平行四边形上、下一组对边间的高,再讲左、右一组对边间的高。
第44页例题要求学生量出平行四边形上、下一组对边间的距离。这两条边之间的距离是它们之间垂直线段的长度,量距离要先画出垂直线段。画垂直线段的方法一般是在一条边上确定一点,从这一点向对边作垂线。学生经过这样的过程,理解教材中关于平行四边形高的描述式定义就有了感性认识。所以,教学时要引导学生思考什么是两条红线间的距离,并画一画两条红线间的垂直线段。
“试一试”的左边一题仍然是上、下两条边之间的高,通过这题巩固对平行四边形高的初步认识。同时看到,画高的时候要在上面一条边上任意确定一点,这任意一点也可以是上面一条边的一个端点,即平行四边形的一个顶点。右边两题是左、右两条边之间的高,要让学生想一想: 图中的红线是平行四边形的高吗,为什么?抓住高的本质特征思考,从而进一步理解平行四边形的高。
(2) 第47页教学梯形的高,教材的编写线索和安排的教学活动与教学平行四边形的高基本相同,有利于学生利用已有经验学习新知识。不同的地方有两处: 一是结合教学梯形的高讲了梯形的上底、下底和腰。二是例题里的梯形的底是上、下两条互相平行的边,“试一试”里出现底是左、右两条互相平行的边的梯形,还有直角梯形。直角梯形的高是垂直于底的那条腰。与画平行四边形的高相同,画梯形的高要在一条底上任意选一点。如果选的点是梯形的顶点,那么这条高把梯形分成一个三角形和一个梯形;如果选的点不是梯形的顶点,那么这条高把梯形分成两个较小的梯形。第48页第3题就为此而设计。
《四边形》教案 篇六
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平≤www.kuaihuida.com≥行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。
(二)拓展提升
一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?
1.引导学生算出它的面积;
2.请学生在方格纸上画出这样的平行四边形;
3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。
4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。
5.思考:面积相等的平行四边形一定等底等高吗?为什么?
【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。
四、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
《四边形》教案 篇七
一、教学目的
.使学生理解四边形及其边、顶点、角、外角的概念;
.使学生熟练掌握四边形内角和定理,并能灵活应用.
二、教学重点、难点
三、教学过程
新课
1.四边形的有关概念
四边形,四边形的边、顶点、角,凸四边形,四边形的对角线,讲解这些概念时,(1)要结合图形;(2)要与三角形类比(渗透类比与扩展思想);(3)讲清定义中的关键词语,如四边形定义中要说明为什么加上“同一平面内”,而三角形的定义中为什么不加“同一平面内”(三角形肯定是平面图形,四边形四个顶点有不共面的情况,即空间四边形,但限于我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制);(4)强调四边形对角线的作用:作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形问题来解(渗透化归思想).要让学生动手作四边形的对角线,并观察用对角线分成的这些三角形与原四边形的关系;(5)强调四边形的表示方法.一定要按顶点顺序书写四边形,如图2-1,记为四边形ABCD.
2.四边形内角和定理
四边形内角和等于360°.
这个定理的证明很容易,结合图2-1指出对角线AC分四边形所成的两个三角形的内角是哪些,四边形的内角是哪些,为什么四边形内角和等于两个三角形的内角和.
定理的应用.常用来解决与四边形或多边形内角有关的问题.
例1已知:如图2-2,直线OB⊥AB,垂足为B,直线OC⊥AC,垂足为C.
求证:(1)∠A+∠1=180°;(2)∠A=∠2.
本例是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系.何时用相等,何时用互补,如果需要可因题制宜.
补充例题
1.四边形的周长为42cm,且四边的比为2∶3∶4∶5,求各边的长.
2.若四边形内角的比为1∶2∶3∶4,求各角的度数.
小结
1.四边形的有关概念.
2.四边形对角线的作用.
3.四边形内角和定理.
练习:选用课本中的练习题.
作业:选用课本中的习题.
补充作业:四边形ABCD中,∠C和∠A互为补角,且∠A∶∠B∶∠D=6∶4∶5.求∠C的度数.
四、教学注意问题
1.讲清概念,揭示概念的本质属性.
2.本单元开始就要注意类比和扩展方法的使用,复杂问题化为简单问题,化未知为已知等数学思想方法的使用.
相 关 文 章
■四边形---教案(二)■平方根---教案(三)■平方根---教案(二)■平方根---教案(一)■几何引言课——教案■几何引言——教案■几何引言(第二课时)——教案■几何引言第一课时教案■直线的性质■直线■二元一次方程组---教案(二)■二元一次方程组---教案(一)■《截一个几何体》■一组与磁带有关的数学问题■正切、余切函数的图象和性质
学而不思则罔,思而不学则殆。快回答为大家分享的7篇《四边形》教案就到这里了,希望在四边形的写作方面给予您相应的帮助。