1. 主页 > 知识大全 >

七年级数学上册教学工作计划【优秀11篇】

作为一名教职工,常常要写一份优秀的教案,借助教案可以让教学工作更科学化。那要怎么写好教案呢?下面的11篇七年级数学上册教学工作计划是由快回答精心整理的七年级数学范文模板,欢迎阅读参考。

七年级数学下册教案 篇一

教学目标

以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。

教学重、难点

重点:了解平方根的概念,求某些非负数的平方根。

难点:平方根的意义。

教学过程

一、提出问题,创设情境。

问题1、要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?

问题2、已知圆的面积是16πcm2,求圆的半径长。

要想解决这些问题,就来学习本节内容。

二、想一想:

1、你能解决上面两个问题吗?这两个问题的实质是什么?

2、25的平方根只有5吗?为什么?

3、-4有平方根吗?为什么?

三、知识引入:

一个正数a的平方根有两个,它们互为相反数。我们用a表示a的正的平方根,读作

“根号a”,其中a叫做被开方数。这个根叫做a的算术平方根,另一个负的平方根记为-a.0的平方根是0,0的算术平方根也是0,负数没有平方根。

求一个数的平方根的运算叫做开平方。

四、能力、知识、提高

同学们展示自学结果,老师点拔

1、情境中的两个问题的实质是已知某数的平方,要求这个数。

2、概括:如果一个数的平方等于a,那么这个数叫做a的平方根。

如52=25,(-5)2=25∴25的平方根有两个:5和-5.

3、任何数的平方都不等于-4,所以-4没有平方根。

五、知识应用

1、求下列各数的平方根

①49②1.69③(-0.2)2

2、将下列各数开平方

①1②0.09

七年级数学下册教案 篇二

教学目标

在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

在推导法则的过程中,培养观察、概括与抽象的能力。

通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

同底数幂相乘的法则的推理过程及运用

难点

同底数幂相乘的运算法则的推理过程

教学过程

一、温故知新

1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

二、新课讲解

探究新知

你能计算出 吗?

学生解答,教师板书

那么 等于多少呢?更一般的, 等于多少呢?

学生回答,教师板书

你发现运算的方法了吗?

师生共同概括归纳出同底数幂乘法的法则:

同底数幂相乘,底数不变,指数相加。

用公式表示是: (、n都是正整数)

动脑筋

当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

三、典例剖析

例1 计算:(1) ;(2)

分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

例2 计算:(1) ;(2)

让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

例3 计算:(1) ;(2)

学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。

四、课堂练习

基础训练:

1.计算:

(1) ;(2) ;(3) ;(4)

2.计算:

(1) ;(2) ;(3) ;(4)

(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

提高训练

3. 计算 ;(2)

4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作。 随着不断地对折, 面条根数不断增加。 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

(用以提升学生运算的灵活性,提高学习兴趣。)

五、小结

师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

六、布置作业

教材P40 第1题,P41 第12题

七年级数学下册教案 篇三

教学目标:

1.借助自己熟悉的事物,感受较小数;

2.通过分析、交流、合作,加深对较小数的认知,发展数感;

3.能用科学技术法表示绝对值较小的数.

重点、难点:

对较小数字的信息作合理的解释和推断,感受较小数,发展数感,用科学记数法表示绝对值较小的数.

教学过程:

一、复习提问

1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。

2.什么叫科学记数法?把下列各数用科学记数法来表示:

(1)2500000(2)753000(3)205000000

二、创设问题情境引入:

出示“议一议”前三幅图(让学生阅读,思考)

教师提出问题:一百万分之一有多少呢?提示本节内容,导入课题“认识百万分之一”.

三、通过师生共同参与教学活动,加深对绝对值较小数的认知.

1.出示投影:“议一议”

珠穆朗玛峰是世界第一高峰,它的海拔高度约为8844米;

(1)让学生计算珠穆朗玛峰高度的千分之一是多少?相当于几层楼的高度?

(2)让学生计算珠穆朗玛峰高度的百万分之一是多少?并直观地描述这个长度.

2.出示投影:“议一议”

(1)让学生计算出天安门面积的百分之一的面积,并用语言描述.

(2)让学生计算出天安门面积的万分之一及百万分之一的面积,并用语言描述.

教师综述:

在日常生活中除了会接触到较大的数,同时也会接触到较小的数;通过刚才大家的计算,交流体会,感受到一个物体的高度或面积的百万分之一的大小,使大家认识了百万分之一.

七年级数学下册教案 篇四

教学目标:

(一)知识目标:

1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

2、理解运算法则及在乘法中对系数运算和指数运算的不同规定、

(二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

(三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、

教学重点:

探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、

教学难点:

理解运算法则及在乘法中对系数运算和指数运算的不同规定、

教学过程:

导入新课:

为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、

受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、

想一想:

(1)对于上面的画面小明得到如下的结果:

第一幅画的画面面积是x(mx)米2、

第二幅画的画面面积是(mx)(x)米2、

他的结果对吗?可以表达得更简单些吗?说说你的理由、

(2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?

(3)如何进行单项式与单项式相乘的运算?

教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

七年级数学下册教案 篇五

教学目标:

1.经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力;

2.在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题。

教学重点:

1.余角、补角、对顶角的概念;

2.理解等角的余角相等、等角的补角相等、对顶角相等。

教学难点:理解等角的余角相等、等角的补角相等;判断是否是对顶角。

准备活动:在打桌球的时候,如果是不能直接的把球打入袋中,那么应该怎么打才能保证球能入袋呢?

教学过程:

内容一:

课件展示桌球运动中球入袋的情景,观察图中各角之间的关系:

教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角之间的关系;在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念。

教师提醒学生:互为余角、互为补角仅仅表明了两个角之间的度量关系,并没有对其位置关系作出限制.(为下面的对顶角的学习作铺垫)

想一想:

在右图中,(1)哪些互为余角?哪些互为补角?

(2)∠3与∠4有什么关系?为什么?

(3)∠AOE与∠BOD有什么关系?为什么?

结论:同角或等角的余角相等,同角或等角的补角相等.

让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论;鼓励学生用自己的语言表达,并说明理由。

内容二:

议一议:

(1)用剪刀剪东西的时候,哪对角同时变大或变小?

(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?它们的大小有什么关系?能试着说明理由吗?

七年级数学下册教案 篇六

1.2二元一次方程组的解法

1.2.1代入消元法

教学目标

1.了解解方程组的基本思想是消元。

2.了解代入法是消元的一种方法。

3.会用代入法解二元一次方程组。

4.培养思维的灵活性,增强学好数学的信心。

教学重点

用代入法解二元一次方程组消元过程。

教学难点

灵活消元使计算简便。

教学过程

一、引入本课。

接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?

二、探究。

比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,

可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?

15xy9例1:解方程组 2y3x1

讨论:怎样消去一个未知数?

解出本题并检验。

12x3y0例2:解方程组 25x7y1

讨论:与例1比较本题中是否有与y3x1类似的方程?

怎样解本题?

学生完成解题过程。

草稿纸上检验所得结果。

简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)

三、练习

P27.练习题。

四、小结

本节课你有什么收获?

五、作业

习题2.2A组第1题。

后记

七年级数学下册教案 篇七

情景设置:

同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙” ,计算图中这些电视墙的面积。

(每一个小长方形的长为a,宽为b)

我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。

从整体上看,“电视墙”的面积为长方形的长与宽的积:3a·3b;

从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。

于是,我们有:3a·3b = 9ab.

新课讲解:

1.探索研究

一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?

请学生回答,教师加以总结归纳:

两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.

4ab·5b这两个单项式的积是20ab。

同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。

2.例题

计算:(1)a·(6ab);

(2)(2x)·(-3xy).

解: (1)a·(6ab)

= (×6)·(a·a)·b

= 2ab;(教师规范格式)

(2)(2x)·(-3xy).

= 8x·(-3xy)

= 【8×(-3)】(x·x)y

= -24xy.

七年级数学下册教案 篇八

教学目标:

1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

教学重点:

1.概率的定义及简单的列举法计算。

2.应用概率知识解决问题。

教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

教学过程:

一、复习旧知

1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,

不可能事件的有 ,必然事件有 ,不确定事件有 。

2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;

3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。

4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

二、情境导入

1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

(1)会出现哪些可能的结果?

(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?

学生分组讨论,教师引导

三、探究新知

1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?

学生分组讨论,教师引导:

(1)一次试验可能出现的结果是有限的;

(2)每种结果出现的可能性相同。

设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

2、探究等可能性事件的概率

(1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?

(2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?

学生先独立思考,然后同桌间讨论,教师巡视指导

一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

P(A)=/n

必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

3、应用新知

例:任意掷一枚均匀骰子。

1.掷出的点数大于4的概率是多少?

2.掷出的点数是偶数的概率是多少?

解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。

1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.

所以P(掷出的点数大于4)=2/6=1/3

2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.

所以P(掷出的点数是偶数)=3/6=1/2

四、实践练习

1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?

2、先后抛掷2枚均匀的硬币

(1)一共可能出现多少种不同的结果?

(2)出现“1枚正面、1面反面”的结果有多少种?

(3)出现“1枚正面、1面反面”的概率有多少种?

(4)出现“1枚正面、1面反面”的概率是1/3,对吗?

3、将一个均匀的骰子先后抛掷2次,计算:

(1)一共有多少种不同的结果?

(2)其中向上的数之和分别是5的结果有多少种?

(3)向上的数之和分别是5的概率是多少?

(4)向上的数之和为6和7的概率是多少?

五、课堂检测

1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )

A 2/9 B 1/3 C 4/9 D以上都不对

2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )

A 0.34 B 0.17 C 0.66 D 0.76

3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )

A 3/10 B 7/10 C 2/5 D 3/5

4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是

5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=

P(摸到白球)=

P(摸到黄球)=

6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

六、课堂小结

回想一下这节课的学习内容,同学们自己的收获是什么?

1、等可能性事件的特征:

(1)一次试验中有可能出现的结果是有限的。(有限性)

(2)每种结果出现的可能性相等。(等可能性)

2、求等可能性事件概率的步骤:

(1)审清题意,判断本试验是否为等可能性事件。

(2)计算所有基本事件的总结果数n。

(3)计算事件A所包含的结果数。

(4)计算P(A)=/n。

布置作业:

1、P148习题6.4知识技能 1.2.3

2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。

板书设计

等可能事件的概率(1)

等可能事件的特征:

1、 一次试验可能出现的结果是有限的;

2、 每一结果出现的可能性相等。

一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

七年级数学下册教案 篇九

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?

五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

2.3二元一次方程组的应用(1)

七年级数学下册教案 篇十

一、教学目标

(一)教学目标

1.了解平方差公式的几何背景。

2.会用面积法推导平方差公式,并能运用公式进行简单的运算。

3.体会符号运算对证明猜想的作用。

(二)能力目标

1.用符号运算证明猜想,提高解决问题的能力。

2.培养学生观察、归纳、概括等能力。

(三)情感目标

1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣。

2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美。

二、教学重难点

(一)教学重点

平方差公式的几何解释和广泛的应用。

(二)教学难点

准确地运用平方差公式进行简单运算,培养基本的运算技能。

三、教具准备

一块大正方形纸板,剪刀。

投影片四张

第一张:想一想,记作(1.7.2 A)

第二张:例3,记作(1.7.2 B)

第三张:例4,记作(1.7.2 C)

第四张:补充练习,记作(1.7.2 D)

四、教学过程

Ⅰ.创设问题情景,引入新课

[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.

这个正方形的面积是多少?

[生]a2.

[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?

[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).

[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论。

(教师可巡视同学们拼图的情况,了解同学们拼图的想法)

七年级数学下册教案 第十一篇

教学过程

一、目标展示

二、情景导入。

装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

要解决这个问题,就要弄清楚平行的判定。

三、直线平行的条件

以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?

三角板经过点P的边与靠在直尺上的边所成的角没有变。

∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单地说:同位角相等,两条直线平行。

符号语言:∵∠1=∠2∴AB∥CD、

如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。

学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。

题组一:

1、叫做平行线。

如图:a与b互相平行,记作,a。

2、在同一平面内,两条直线的位置关系b只有与两种。

3、下列生活实例中:

(1)交通道路上的斑马线;

(2)天上的彩虹;

(3)阅兵队的纵队;

(4)百米跑道线,属于平行线的有。

学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。

题组二:

4、通过画图和观察,可得两个平行公理:

①、经过点,一条直线平行于已知直线;

②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。

5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:

①、a与b没有公共点,则a与b;

②、a与b有且只有一个公共点,则a与b;

③、 a与b有两个公共点,则a与b;

6、过一点画已知直线的平行线有()

A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条

教学设计

1、落实教学常规,践行学校《教师日常教学行为要求》。

2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。

熟读唐诗三百首,不会做诗也会吟。以上就是快回答给大家分享的11篇七年级数学上册教学工作计划,希望能够让您对于七年级数学的写作更加的得心应手。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。