1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。高考家长帮小编精心为您整理了一元二次方程复习教案(最新6篇),希望可以抛砖引玉,帮助到朋友们。
《一元二次方程》的优秀教案 篇一
1、自我介绍:30s
大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!
2、一元二次方程概念、系数、根的判别式:8min30s
我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!
一元:只含一个未知数
二次:含未知数项的最高次数为2
方程:一个等式
一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。
3、一元二次方程的解法:20min
那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~
(1)直接开方法
遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?
(2)配方法
大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:
简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)
需要变换的:2x +4x-8=0
步骤:将二次项系数化为1,左右同除2得:x +2x-4=0
将常数项移到等号右边得:x +2x=4
左右同时加上一次项系数一半的平方得:x +2x+1=4+1
所以有方程为:(x+1)=5 形似 x=n
然后用直接开平方解得x+1=±5 x=±5-1
大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!
题目:1/2x-5x-1=0 答案:x=±+5
大家都会做吗?还需要讲解详细步骤吗?
(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~
首先,公式法里面的公式大家还记得吗?
x=(-b ±2-4ac )/2a
这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:
3x -2x-4=0
其中a=3,b=-2,c=-4
带入公式得:x=((-(-2))± 2) 2-4x(-4)x3/(2x3)
化简得:x1=(1-)/3 x2=(1+)/3
同学们你们解对了吗?
使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~
(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!
简单来说,因式分解就是将多项式化为式子的乘积形式。
比如说ab+ab 可以化成ab (1+a)的乘积形式。
那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0 这样就可以解出x=-a/m x=-b/n
我们一起做一个例题巩固一下:4x +5x+1=0
则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、总结:1min
好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!
《一元二次方程》的优秀教案 篇二
【教学目标】
(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(2)会用因式分解法解一元二次方程
【教学重点】
一元二次方程的概念、一元二次方程的一般形式
【教学难点】
因式分解法解一元二次方程
【教学过程】
(一)创设情景,引入新课
实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)
2:一元二次方程的一般形式(形如aX+bX+c=0)
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零
3:讲解例子
4:利用因式分解法解一元二次方程
5:讲解例子
6:一般步骤
(三)小结
(四)布置作业
元二次方程的应用 篇三
第一课时
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点 :根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
解法(三) 设较小的奇数为,则另一个奇数为。
据题意,得
整理后,得
解得,,或。
当时,。
当时,。
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3.选出三种方法中最简单的一种。
练习1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。
例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数十位数字个位数字。
三位数百位数字十位数字个位数字。
解:设个位数字为x,则十位数字为,这个两位数是。
据题意,得,
整理,得,
解这个方程,得(不合题意,舍去)
当时,
答:这个两位数是24。
以上分析,解答,教师引导,板书,学生回答,体会,评价。
注意:在求得解之后,要进行实际题意的检验。
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
教材P42A 1、2
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题。设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个。
初三上册数学教学工作计划 篇四
【学习目标】
1、了解整式方程和一元二次方程的概念 。
2、 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
【重点、难点】
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定
【学习过程】
一、
知识回顾
1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________
二、
探究新知[一]
1、一元二次方程的一般形式是( )
1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2)。方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?
3)。强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.
探究新知(二)
1、说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[学以致用:]
强化概念:
1、 说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知识总结:]
(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );
(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。如:(3x十2) 2=4(x-3)____________
诊断检测题一:
1、一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项。
2、方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.
3、方程mx2+5x+n=0一定是( )。
A.一元二次方程 B.一元一次方程
C.整式方程 D.关于x的一元二次方程
4、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )
A.任意实数 B. m≠-1 C. m>1 D. m>0
5、方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6、把下列方程化成一般形式,且指出其二次项,一次项和常数项
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
诊断检测题二:
1、方程 的二次项系数是 ,一次项系数是 ,常数项是 。
2、把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;
3、一元二次方程 的一个根是3,则 ;
4、 是实数,且 ,则 的值是 。
5、关于 的方程 是一元二次方程,则 。
6、方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
元二次方程复习教案 篇五
1、复习一元二次方程,一元二次方程的解的概念;
2、复习4种方法解简单的一元二次方程;
3、会建立一元二次方程的模型解决简单的实际问题。
[学习过程]
一、回顾知识点
1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。
2、一元二次方程的一般形式是_______________________________。
3、一元二次方程的解法有____________、____________、____________、____________。
4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。
①当△0时,方程有__________;
②当△=0时,方程有__________;
③当△0时,方程有__________。
5. 一元二次方程 的两根为 , 则两根与方程系数之间有如下关系:
二巩固练习
二、填空题:
1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。
2、已知x=1是一元二次方程x2-2mx+1=0的`一个解,则m=______。
3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。
4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。
5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。
6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。
7、解方程5(x- )2=2(x- )最适当的方法是_____________。二、填空题:(每题3分,共24分)
8.一元二次方程 的二次项系数为 ,一次项系数为 ,常数项为 ;
9. 方程 的解为
10.已知关于x一元二次方程 有一个根为1,则
11.当代数式 的值等于7时,代数式 的值是 ;
12.关于 实数根(注:填“有”或“没有”)。
13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 ;
14.已知一元二次方程 的一个根为 ,则 .
15. 阅读材料:设一元二次方程 的两根为 , ,则两根与方程系数之间有如下
关系:根据该材料填空:已知 , 是方程 的两实数根,则 的值为______ .
三、选择题:(每题3分,共30分)
1、关于x的方程 是一元二次方程,则
A、a0 B、a≠0 C、a=0 D、a≥0
2.用配方法解下列方程,其中应在左右两边同时加上4的是
A、 B、 C、 D、
3.方程 的根是
A、 B、 C、 D、
4.下列方程中,关于x的一元二次方程的是
A、 B、 C、 D、
5.关于x的一元二次方程x2+kx-1=0的根的情况是
A、有两个不相等实数根 B、没有实数根
C、有两个相等的实数根D、不能确定
6.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是
A、1 B、0 C、0或1 D、0或-1
7.为执行“两免一补”政策,某地区2008年投入教育经费2500万元,预计2010年投入3600万元。设这两年投入教育经费的年平均增长百分率为 ,则下列方程正确的是
A、 B、
C、 D、
8. 已知 、 是方程 的两个根,则代数式 的值
A、37 B、26 C、13 D、10
9.等腰三角形的底和腰是方程 的两个根,则这个三角形的周长是
A、8 B、10 C、8或10 D、不能确定
10.一元二次方程 化为一般形式为
A、 B、 C、 D、
四、解答题:(共46分)
19、解方程(每题4分,共16分)
(1) (2)
22、已知a、b、c均为实数,且 ,求方程
的根。(8分)
23.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,
每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售吉祥物上盈利
1200元,那么每套应降价多少?(10分)
24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几来,通过拆迁旧房,植草。
栽树,修公园等措施,使城区绿地面积不断增加(如图)(12分)
(1)根据图中所提供的信息,回答下列的问题:2003年的绿地面积为______公顷,比2002年增加了________
公顷。在2001年,2002年,2003年这三年中,绿地面积增加最多的是___________年。
(2)为了满足城市发展的需要,计划到2005年使城区绿地总面积达到72.6公顷,试求这两年(2003~2005年)
绿地面积的年平均增长率。
元二次方程 篇六
教学目的
1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义。
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称。
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本p6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。
课外作业:略
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。