1. 主页 > 范文大全 >

小数乘小数的教案(优秀9篇)

作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?高考家长帮小编精心为小伙伴们分享了小数乘小数的教案(优秀9篇),希望能够给朋友们的写作带来一些的启发。

《小数乘小数》的教学设计 篇一

一、教学内容:苏教版五年级上册第86~87页例1及相应的“试一试”“练一练”,练习十第1~3题。

二、教学目标:

1.让学生提通过主动探索,理解并掌握小数乘小数的计算方法,能正确进行相关的计算。

2.让学生在探索计算方法的过程中,进一步增强探索数学知识和规律的能力。

3.让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的 兴趣,提高学好数学的自信心。

三、教学重点、难点:

重点:探索小数乘小数的笔算方法,能正确进行相关的计算。

难点:理解小数乘小数的计算方法。

四、教学过程

(一)回忆迁移

1.提问回忆

看图根据提供的信息,你能求出什么问题?

学生答:房间、阳台的周长和面积各多少?房间的长比阳台的长多多少?

那求房间的周长怎么列式?生答:(3.6+2.8)×2

=6.4×2

=12.8(米)

和学生一道计算出结果,结合计算过程让学生回忆小数加减、小数乘整数计算方法。

2.列式揭题

求房间的面积怎么列式?(3.6 × 2.8)阳台?(2.8×1.15)

观察2道算式,想想今天我们会研究什么内容?揭题“小数乘小数”

【评:把计算教学与解决问题紧密联系是新课标的一个特点,因此在教学中注意让学生根据呈现的数据提出想解决的问题,并自己列式解决,这样不仅引出新知,同时也提高学生发现问题、解决问题的能力,而且通过求周长的计算让学生回忆小数加减、小数乘整数计算方法便于后面学习、沟通、比较、转化。】

3.类推算式

是的,看这道3.6 × 2.8小数乘小数的算式,你还能想到与它有关的其它乘法算式吗?

生答:36×28 、3.6×28、36×2.8、0.36×0.28等。

【评:培养学生类推、联想能力为下面学习、探究,后继学习做好孕伏。】

(二)探索归纳

同学们算小数乘整数时是先转化成整数乘法去算的,看来整数乘法比较重要,是基础。下面我们一道来笔算36×28=

1.回忆积的变化规律

根据36×28=1008这个算式,谁来说说36×2.8的积是多少?为什么?3.6 ×28呢?为什么积都是100.8呢?

2.猜积估算

那3.6 ×2.8的积是多少?(10.08)看来大家是胸有成竹了, 其实换个角度思考更容易发现问题的本质,想想积可能是10.08吗?1.008 吗?为什么?

( 因为3.6≈3  2.8≈2  3×2=6; 3.6≈4  2.8≈3  4×3=12;所以3.6 ×2.8的积在6与12之间。因而不可能是100.8和1.008。)

【评:培养学生的估算意识,确定积的范围,为探索笔算方法提供一种支持。】

3.自主探索

说得有道理,但数学不只是猜测,还要有严密的推理和论证,那准确得数是多少?你有什么办法知道?   生答:进行单位换算后用竖式计算或直接用竖式计算。那你们就试试看吧。

学生汇报,让学生分析说明进行单位换算后用竖式计算局限性,重点分析直接用竖式计算的做法。算时什么地方让你为难?3.6 ×2.8的积为什么是两位小数?(根据小数乘整数的经验、估算、单位换算。)还有别的方法吗?(利用积的变化规律来说明。)让学生竖式说说怎样算的?

强调:其实把2个因数都看成整数等于把两个因数分别乘10,得到的积是1008,1008就是原来的积乘了100,要求原来的积就得用1008÷100,只要从1008的右边起数出两位点上小数点。这就是用了积的变化规律和小数点移动规律去思考,确实验证了积是两位小数,前面的猜测也是对的。写单位和答句。

【评:学生自己根据已有知识、经验独立想办法利用笔算、利用单位换算等算出准确结果,培养了学生思维的开放性,通过学生的辨析让学生知道笔算具有普遍性,从而算法得以优化,很好的帮助学生理解小数乘小数的计算方法。】

4.自主尝试

根据刚才学例1的方法和经验你能算出阳台的面积吗?打开书87页完成试一试并请一位同学上黑板板演,写得快的同学可相互说说是怎样得到它的积的?

追问:得到3220后为什么除以1000呢?把2个因数都看成整数等于把两个因数分别乘10、100, 3220就是原来的积乘了1000,求原来的积就得用3220÷1000,要从3220的右边起数出三位点上小数点。

核对书上的填空后,问得数可以化简吗?化简后的结果是多少? 为了研究方便,我们不急于化简。

【评:让学生依据笔算例1得到的经验与方法迁移至试一试的探索,使经验方法通过笔算更明朗化,为下面概括、总结提供支撑。】

5.比较概括

观察例1与试一试两题中两个因数与积的小数位数,你发现什么?(两个因数一共有几位小数,积里面就有几位小数。)

通过这两题的探索,想必大家对小数乘小数的方法都有了各自的理解,你觉得小数乘小数该怎样计算?小组讨论交流,个别汇报(先按整数乘法算出积是多少,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)其实小数乘小数可分为三步即:一算、二看、三点。一算:怎么算?二看:看什么?点:怎么点?

【评:学生通过观察、比较、抽象、概括出小数乘小数的计算方法。进一步体会到知识之间的内在联系,感受数学知识和方法的应用价值,激发学习的兴趣,提高学数学的自信心。】

(三)巩固质疑

1.在计算时第一步应该没问题关键是后两步,看错点错积就错,下面就进行针对性的练习。

⑴完成书87页练一练第1题

⑵.说说下面每题的积是几位小数,再算算看。

3.46×1.2    1.8×4.5   10.4×2.5

2. 总结:今天学了什么?有什么收获?打开书第86~87页,仔细的看,看有什么不懂等会提出来。

【评:培养学生看书质疑的能力,努力体现真实的学习、追求真实的课堂。】

(四)提高拓展

1.比一比谁的眼力强、谁的思维好。

⑴已知123×34=4182给因数点小数点使等式成立

123×34=41.82

⑵想一想1.25×3.2=4这题有没有做错?

⑶8.05×1.2=4这题正确吗?

⑷选择   2.4×1.86=(   )

① 10.074   ② 4.464    ③4.98

【评:及时的练习巩固了新知,培养学生的直感】

2.完成89页的2、3两题

3.0.36×0.28积是几位小数?又该怎样计算呢?

【评:前后呼应,提出了后继学习的知识点,培养了学生探究的能力】

《小数乘小数》的教学设计 篇二

教学内容:

P70页例7及“试一试和练一练”,练习十二2、3题。

教学目标:

使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。

教学重点:

正确运用计算法则计算小数乘小数的乘法

教学难点:

理解小数乘小数的意义,掌握小数乘小数的计算法则

教学过程

一、复习

0.52+0.48=0.17+0.33=3.6+6.4=

0.8×3=3.7×5=46×0.3=

二、新授:

1、教学例7。

(1)出示例7

(2)从图中你知道了哪些信息?

(3)提问:如果要求小明房间的面积有多大?先估计一下。

3.8×3.2≈()(说一说估计的方法)

(4)提出:列竖式计算怎样算呢?

把这两个小数都看成整数,很快计结果。

3.8×1038

×3.2×10×32

7676

114÷100114

12.161216

相乘后怎样才能得到原来的积?

(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。

2、第65页试一试。

提出:要求阳台的面积是多少平方米?怎样列式?

计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)

强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68

3、小数乘小数的计算法则。

(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?

(2)同桌讨论:说说小数乘小数应该怎样计算?

小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

三、巩固练习

1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)

2、完成第65页练一练第2题(学生独立完成,集体校对)

3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)

4、完成练习十二第3题。(说说数量关系,再列式计算)

四、课堂小结:今天你学到了什么知识?

教学反思:

面对学生出现的错误,使我不得不重新审视自己的课堂,并对此进行深刻反思:通过分析,我决定从以下几方面加以改进:

1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。

2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。

第七课时小数乘小数(二)

教学内容:P66页例8,“练一练”,练习十二第1、3、4、5题。

教学目标:使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。

教学重点:掌握确定积的小数位数时,位数不够时用“0”补足

教学难点:确定积里小数点的位置

教学准备:课件、展台

教学过程:

一、复习:出示练习十二第4题

根据第一栏的积,写出其他各栏的积(说说是怎样想的?)

二、教学例8。

出示例8。

(1)花架的占地面积是多少平方米?怎样列式?

指名回答,师板书算式。

(2)学生试做。

0.28

《小数乘小数》教学设计 篇三

教学内容: 九年义务教育第九册教科书第4页的例子。

教学目标:1、使学生理解小数的意义,掌握小数乘法的计算法则,并能正确地进行计算。

2、引导学生感觉转化的思想方法,培养学生的类推、迁移的能力。

3、进行爱护公物、保护学校环境的品德教育。

教学重点和难点:重点是在理解小数乘和小数意义的基础上掌握计算方法。

难点是让学生自主探索小数乘法的计算方法,能正确地进行笔算。

教具准备:课件、小黑板

教学过程:一、复习铺垫,生活引入。

1、 复习铺垫

⑴ 0.7表示十分之( )

0.38表示 ( )

0.925表示( )

⑵ 计算 :1.36×12 3.08×25 3.6×21

【设计意图:设计与本课题密切联系的复习题。将本课所学内容与前面知识有机结合起来,让学生感知数学知识内在联系了。】

2、 生活引入新课

师:同学们,我们校门口的宣传栏上的玻璃碎了,今天老师和你们一起去换玻璃,你们愿去吗?

生:愿去。

师:电脑显示宣传栏的特写镜头,学校宣传栏长1.2米,宽0.8米,如果要给这宣传栏换玻璃,需要多大一块玻璃?小明想了半天也不知该换多大的一块玻璃?

师:同学们,小明遇到了什么困难?

生:小明不知该换多大一块的玻璃?

师:你们乐意帮助小明解决这个问题吗?

生:乐意!

二、新知探究

1、自主合作探究

师:同学们都很热情,请同学们先自主探究算出换多大一块玻璃。

让生合作探究、讨论、计算。

师:同学们能力很强,很快就算出结果,请小组先派一名代表。

a组代表:算法:1.2×0.8=1.2÷10×8=0.96(平方米)

算理:我们组把1.2平均分成10份,求8份是多少?

b组代表:算法

1.2 扩大到要的10倍 12

×0.8 扩大到要的10倍 ×8

0.9 6 缩小到要的 9 6

算理:我们组经过讨论,我们先把1.2×0.8看成12×8再算出积,然后把积缩小要的100 ,再点上小数点。

3、 交流评价,掌握算法算理

师:刚才每个小组都展示了算法和算理,现在有不同意风要提出质疑的。

师:同学们,你们都很热情帮助别人,现在教师需要换块长1.5米,宽0.9米的玻璃,需要多大的一块玻璃?请你们选择适合自己的方法帮老师算一算。

生1:我会算,应换1.35平方米。

师 :你们能把计算过程向大家说一说吗?

生:我先把1.5×0.9看成整数乘法,然后按照整数乘法法则算出积,最后看因数中一共有几位小数,就从右边数出几们点上小数点。

1 .5 扩大到要的10倍 15

×0. 9 扩大到要的10倍 ×9

1.3 5 缩小到要的 135

师:你发现了什么?

3.练习:完成p4做一做。

学生独立作,做完后指名说

师:今天我们学习了小数乘小数,你们还有什么疑问吗?老师可有个问题想问大家,如果所乘得的积的位数不够怎么办?

小组讨论: 积的位数不够时,需添:“0”补足。

4.总结小数乘法的计算法。

⑴ 计算小数乘法转化成整数乘法进行计算。

⑵ 看因数中一菜有几位小数,就从积的右边数出几位,点上小数点。

⑶ 积的位数不够,需要用“0”补足。

【设计意图:采用学生个体自主探究,小组合作探究和老师的点拨形式,充分发挥“学生主使”作用了。】

四、课堂练习

1.自主练习:p6练习

2.选择:

⑴ 两个小数相乘,积一定( )

a.大于 b.小于 c.等于

⑵ a×b<a (a、b均大于0),则b ( )

a.> b.< c.=

⑶ 下面各式中乘积最小的是( )

a.12.75×8.3 b.127.5×8.3 c.12.75×0.83

【设计意图: 设计巩固练习题借以对新知识的巩固加深,使学生思维能力得以培养。 】

《小数乘小数》的教学设计 篇四

教学内容:

苏教版《义务教育课程标准实验教科书数学》五年级上册第86~87页。

教学目标:

1、让学生借助已有经验探索小数乘小数的计算方法,并在师生互动中理解算理,能正确地用竖式计算小数乘小数。

2、让学生经历探索计算方法的过程,培养其初步的推理能力和抽象概括能力。

3、使学生体会数学知识之间的内在联系,感受转化思想的魅力,增强学好数学的兴趣。

教学重点:

理解并掌握小数乘小数的计算方法。

教学难点:

确定积的小数位数。

教学过程:

一、基本练习

口算下面各题。

5×0.520×0.41.1×4

0.39×1001.8×10×10237÷100

[评析:口算练习应贯穿计算教学的始终,加强口算练习,能有效提高学生的笔算能力。这里的基本练习,还为学生学习新知找出了理论依据和最近发展区。]

二、探究新知

1、引入。

课件出示情境图。(小明房间、阳台平面图)

师:小明家最近换了新房子。同学们请看,这是小明房间和阳台的平面图。根据图中的数据你能提出哪些数学问题?(房间的面积有多大?阳台的面积有多大?房间和阳台一共多少平方米?……)

师:同学们提出了很多有价值的问题。如果要求房间的面积有多大,该怎样列式呢?(板书:3.6×2.8)这道算式和我们以前学习的小数乘法有什么不同?(两个因数都是小数)

师:今天这节课我们一起来探讨小数乘小数的计算方法。

板书课题:小数乘小数

2、估算。

师:同学们不妨先估计一下小明房间的面积有多大。

学生的估计可能有下面几种情况:①3×3=9。把3.6和2.8分别看成与它们比较接近的整数,把3.6看小,把2.8看大,所以面积在9平方米左右;②4×3=12。把3.6和2.8分别看成与它们最接近的整数,把两个数都看大了,所以面积比12平方米小;③3.6×3=10、8。面积和10、8平方米接近。

通过交流,让学生明确房间的面积一定比12平方米小,并且在9平方米左右。

3、试算。

师:3.6×2.8的积究竟是多少?你能试着用竖式计算吗?

教师巡视,了解试做情况,并给试算有困难的同学以引导、提示:把两个小数都看成整数计算。

教师选取不同的结果板书在黑板上。学生可能出现以下两种情况:

师:根据估计的结果,大家一致认为10、08是合理的答案,同学们真善于动脑筋思考。看来问题的关键是积的小数位数。

4、明理。

师:谁愿意说一说3.6×2.8的积为什么是两位小数?

学生可能出现两种解释:①把3.6米和2.8米分别写成分米作单位,算出面积1008平方分米,再还原成平方米作单位,所以积是两位小数;②运用积的变化规律和小数点位置移动的规律,把3.6看成36是把3.6乘10,2.8看成28是把2.8乘10,两个因数分别乘10,算出的积1008就等于原来的积乘100,要得到原来的积,就要用1008除以100,所以积是10、08。

《小数乘小数》教学设计 篇五

教学内容:教科书p86-87例1及相应的“试一试”,练习十五第1-3题。

教学目标:1.引导学生在自主探究、小组交流等方式上,理解并掌握小数乘小数的方法,能正确计算相应的题目。

2.在探索计算方法的过程中,培养学生初步的 推理能力以及抽象、概括能力。

3.引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重点:确定积的小数点的位置。

教学难点:理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的过程。

教学过程:

一、复习旧知,引入课题

1.用竖式计算:

0.57×23 =         2.5×44=

提问:说说你是怎么算的?

2.根据13 × 12 = 156 ,直接写出下面各题的积。

1.3 × 12 =

13  × 1.2=

1.3 × 1.2 =

(要求学生回答问题要完整。例如:因为13 × 12 = 156,而1.3× 1.2中13缩小了十倍,所以积就要缩小十倍是15.6)

提问:我们以前学习了小数乘整数,那么 1.3 × 1.2是小数乘小数,它的结果你们说的对吗?学完这节课你就知道了(导入课题)

二、引导探究,掌握方法。

1.课件出示例题。提问:

① 从图中,你能获取那些数学信息?

② 根据这些信息,你能提出哪些数学问题?

③ 下面我们就来解决小明房间的面积有多大?

你会列式计算小明房间的面积吗?

(出示3.6×2.8=)

2、3.6×2.8=?和我们以前学过的小数乘法有什么不同?你能估算一下它的面积大约是多少吗?(指导学生估算3.6×2.8的积)

3、探索笔算方法

①通过刚才的估计,我们知道3.6×2.8的积应该在6~12之间,或者说是在9左右。那么准确的得数究竟是多少呢?我们可以用竖式计算。 (谁能在黑板上写出3.6×2.8的竖式)。

②怎么用竖式计算呢?小组里的同学讨论讨论,如果讨论好了,可以试着写在随堂本上

③教师巡视,指名一学生上黑板计算,师生互动,完成后说说你是怎么想的,引导学生思考小数乘小数按照整数乘整数的计算想起。(在计算3.6×2.8时想起36×28的笔算,师板书:  36

×28

④做错的同学订正一下。

⑤引导学生想一想小数乘小数怎么算?

三、自主探索,形成认识

教学“试一试”

1.我们现在来解决小明阳台面积的问题,请同学们列式计算(独立完成)。

2.观察黑板上的四道竖式,思考:

①结合具体题目,让学生说说两个因数与积的小数位数有什么关系?

②小数乘小数与小数乘整数在计算的过程中有什么相同点与不同点?

3.总结、归纳小数乘小数的计算方法。

四、巩固练习,加强理解

1.解决1.3×1.2=1.56

让学生说说为什么?(去掉问号)

2.你能给下面各题的积点上小数点吗?(p87第一题)

提问:说说为什么这样点小数点?要注意些什么?

4.用竖式计算:

4.6×1.2=         1.8×4.5=        10.4×2.5=

3.下面的计算对吗?把不对的改正过来(p89 第2题)

五、全课小结

这节课你有什么收获?有什么需要提醒其他同学的?

六、作业:p89第1.3题

《小数乘小数》的教学设计 篇六

[教学内容]

教材第82~83页例1、“试一试”以及相应的练习。

[教学目标]

1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。

2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点]

确定积的小数点的位置。

[教学难点]

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析]

本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而,“按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程,教材安排两次探究活动:第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。

[教学过程]

一、在“情境”中引发问题

1、复习旧知:小明搬了新家,这是他家的建筑平面图。你能计算每个房间的占地面积吗?说说你是怎样算的?

书房的面积:3×3=9平方米

厨房的面积:2.7×2=5.4平方米,先按照整数乘法进行计算,因为2.7中有一位小数,所以积中也有一位小数。

客厅的面积:3.21×5=16.05平方米先按照整数乘法进行计算,因为3.21中有两位小数,所以积中也有两位小数。

2、提出问题:有没有同学能计算卧室的面积?

列出算式:3.6×2.8(学生苦于无法计算,面露难色)

指导观察:“3.6×2.8”和刚才的乘法算式有什么不同?

揭示课题:这节课我们一起来探讨“小数乘小数”的计算方法。

(设计意图:从计算“房间的面积”这个生活原型引入,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。)

二、在推理中实现转化

(一)尝试计算,引导推理

1、估一估,确定积的范围

先估计一下,“3.6×2.8”的积大约是多少?

估算方法一:4×3=12平方米,把3.6和2.8分别看成最为接近的整数,把两个数都看大了,准确得数比估计的数小,所以积小于12平方米。

方法二:3×3=9平方米,把3.6和2.8分别看成比较接近的整数,把3.6看小,2.8看大,所以积在9平方米左右。

确定范围:通过刚才的估计,我们知道“3.6×2.8”的积应该小于12平方米或是9平方米左右,那么准确得数究竟是多少呢?我们可以用竖式来计算。

(设计意图:在竖式计算之前先估一估,一方面使学生体会到解决问题策略的多样性与灵活性,在不要求精确结果的情况下可以使用估算方法很快解决实际问题。同时不同估算方法得到的结果也能为探索笔算方法提供正确结果的大致范围。)

2、点拨转化方向

根据我们以往计算小数乘整数的经验,猜测一下:用竖式计算小数乘小数可以怎样计算?(把两个小数都看成整数,先按整数乘法进行计算,点上小数点。)

3、尝试计算,突现矛盾

学生独立尝试计算,小组相互交流。而后,选择不同的方法板书在黑板上。可能有以下两种方法:

3.63.6

×2.8×2.8

288288

7272

100.810.08

(a)(b)

方法a:把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积也是一位小数,结果是100.8。

方法b:我也是把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积中肯定也有两位小数,积是10.08。

突现矛盾:两种算法似乎都有各自的道理。那么,根据你的理解,哪种算法可能是正确的?(学生可以从刚才估计的结果来判断)大家一致认为10.08是合理的答案,看来关键问题是积的小数位数。计算3.6×2.8的积为什么要点出两位小数?我们继续研究。

4、激活旧知,引导推理

尝试解释:计算3.6×2.8的积为什么要点出两位小数?你能想办法说明吗?

可能出现两种解释方法。方法一:把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位。所以积是两位小数。方法二:运用“积的变化规律”和“小数点移动规律”,计算时把3.6和2.8分别看作36和28,把两个因数都乘了10,算出的积1008就等于原来的积乘100。为了让积不变,就要把1008除以100。

引导推理:随着学生的回答,出示分析推理图,你能看懂虚线框里的意思吗?谁愿意说说自己的理解?

3.6

×2.8

288

72

1008

看着分析图,引导学生完整叙述整个推理过程。

第一个箭头“×10”是把3.6看成36是乘10;第二个箭头“×10”是把2.8看成28是乘10;把两个因数都乘10,得到的积就等于原来的积乘100;最后一个箭头“÷100”表示要得到原来的积就要把得到的整数积除以100。

现在你们知道算法a错在哪里了吗?(两个因数都乘10,积也就乘了100,算法a只把得到的积除以了10。)

小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。

通过推理,我们证明了3.6×2.8=10.08,和估计的结果是一致的,积确实小于12平方米或是9平方米左右。

(设计意图:最现实的教学起点是学生认知上的困惑与矛盾处。学生根据以往小数乘整数的经验,能够凭借直觉判断小数乘小数也能转化乘整数乘法进行。然而按整数乘法算出积后如何回归到小数乘法的积,恰是学生的思维困惑处。适时呈现推理图,让学生思考虚线框里的箭头图及提示算式的意思,扶着学生一步步完成整个推理过程。)

(二)独立推理,实现转化

1、提出问题:刚才我们求出了小明房间的面积,阳台的面积是多少平方米呢?

根据例题学习的方法,先想一想可以怎样计算2.8×1.15,再根据自己的思考过程,结合分析图完成。

1.15

×2.8

920

230

2、交流推理过程:你是怎样得到1.15乘2.8的积的?追问:得到3220后为什么除以1000呢?

引导学生表达(结合分析图):把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000。要求原来的积,就要用3220除以1000,从3220的右边起数出三位,点上小数点。

3.220可以化简吗?根据是什么?

(设计意图:这里学生独立经历推理的过程,看图填数,依着箭头图的提示进行完整的思考。通过扶放结合,循序渐进的数学推理活动,学生在探索中感受着计算思维的内在魅力,感悟着知识间的内在联系、解决新问题的有效途径——转化策略,同时对“积的小数位数与因数小数位数”的关系也有了初步的体验。)

(三)专项对比,概括方法

1、专项对比:两次探究之后,我们来比较各题中两个因数与积的小数位数,你发现它们之间有什么联系?(小数与小数相乘时,如果因数里一共有几位小数,那么积里面就有几位小数。)

2、你能给下面各题的积点上小数点吗?

8.772.916.5

×0.9×0.04×0.6

7832916990

3、概括方法:通过探索,大家对小数乘小数的方法都有了各自的理解。那么,你觉得小数乘小数应该怎样计算?小组里互相说一说。

在全班交流的基础上引导学生完整表达:先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。跟我们刚才的猜测是吻合的,关键是确定积的小数点的位置。

(设计意图:探索之后应是发现与提升。通过比较因数与积的小数位数的关系,学生在理解算理的基础上自然发现积里点小数点的操作方法。随后归纳概括出小数乘小数的计算方法也就水到渠成了。)

三、在“应用”中发展思维

1、基本练习

(1)根据148×23=3404,很快地写出下面各题的积

14.8×23=148×2.3=14.8×2.3=1.48×2.3=0.148×23=

(2)完成练习十四第1题。学生独立计算,然后同桌互相检查计算过程。

2、解决问题

(1)星期天,小明的妈妈去超市买东西。

商品名称

色拉油

饼干

大米

单价

38.7元/瓶

15.6元/千克

5.8元/千克

数量

2瓶

1.5千克

18.4千克

总价

(2)这是小明的爸爸去某地出差乘出租车的一张发票,显示以下信息:单价1.6元,里程5.5千米,起步价8元/3千米。学生讨论算法,尝试计算。

3、拓展练习

在括号里填上合适的数,使算式成立。

()×()=0.48

(设计意图:这里既有突出重点方法的专项练习、基本练习,又有运用方法解决问题的实际应用,更有拓展思维的挑战性练习,希望通过一系列有层次的练习活动,实现学生计算教学中的基础性和发展性的和谐统一。)

四、在“交流”中提升经验

让学生畅谈学习的感想,并总结本课的主要知识。

(设计意图:反思是重要的学习方式,在新课即将结束时,引导学生回顾与反思方法与技能的获得过程,能帮助学生提升转化这一重要的解决问题的策略,丰富学生的体验。)

小数乘小数的教案 篇七

教学目标:

1、利用已学知识引导学生发现、总结一位小数加减法的计算方法,

2、能解决简单的小数加减法问题,

3、提高学生学习数学的兴趣。

教学重点:

掌握一位小数加减法的计算法则。

教学难点:

掌握一位小数加减法的计算法则,让学生在学习中体会学习数学的乐趣,提高学习兴趣。

教学方法:

谈话法,观察法,讨论法

教学过程:

一、谈话引入

1、出示ppt(超市图片)

师问:同学们看看这是哪里呀?(超市)

对,这是超市,大家都知道我们街上也刚刚开了一家超市,你们去过吗?(去过)老师前两天也去过呢,今天,老师还给大家带来了一些前两天从超市里买来的东西。大家想知道是什么吗?(想~)看来同学们不是很想知道,能不能大声地告诉老师,你想知道吗? (生大声回答)

2、出示教具尺子和毽子等,生说出它们的名称,师在黑板上标好价格。(尺子1.2元,毽子2.5元)

3、师:老师这里还有很多东西呢,大家喜欢这些东西吗?(喜欢)师:好,如果待会儿哪位同学表现很棒的话,老师就将这些东西作为奖品奖励给他们,不过,要想表现好的话首先得和老师一起解决几个问题。

二、新授

1、出示ppt,生观察尺子和毽子的价格,并让生用前面学过的知识独立说出它们分别表示几元几角。师:看到它们的价格,有同学有疑问了,老师买这两样东西一共给了售货员阿姨多少钱呢?

2、这就是我们今天即将解决的第一个问题,请同学们把这个问题朗读一遍。

3、指名列算式,师板书:1.2+2.5=,师:为什么要这样列算式呢?(合理即给予鼓励表扬)

4、这个算式和我们以前学过的有什么不同呢?那同学们能不能用我们前边学习的元角分的知识来计算出它的结果呢?生独立在练习本上计算。

5、反馈。生可能

(1)2元加1元等于3元,2角加5角等于7角,合起来就是3元7角。

(2)1元2角加2元等于3元2角,3元2角再加5角也是3元7角。能用竖式表示出来吗?

元角

1 2

+ 2 5

————————

3 7

师生一起回顾计算过程,师:能用1元加5角等于6元吗?为什么?强调一定要元加元,角加角。

6、这道题除了这种方法我们还可以用小数加法进行计算,那么小数加法又该怎样列竖式计算呢?这就是我们今天要学习的知识。(板书课题:一位小数的加减法)然后分组讨论。

7、反馈,生答师板书。先写什么?然后2写在哪里?5写在哪里?然后从哪儿开始计算呢?。.......最后再对齐横线上小数点的位置点上小数点。所以算出来的结果是3.7元,也就是3元7角。

8、生观察,师引导,发现小数点要对齐。师强调小数点必须对整齐,这是小数加减法的一个重要特征,小数点对整齐了相同数位也就对整齐了。

9、练习

6.5+2= 4.2+3.7= 53.6+2.2=

(1)生独立完成后指名将自己的计算过程写到黑板上,集体订正。

(2)师着重以第一道算式为例讲解整数和小数相加的'方法。(在小数的末尾去掉一个或几个零,或者增加一个或几个零,小数的大小不改变)

10、小结一位小数加法的计算法则:相同数位要对齐(即小数点对整齐)然后再按照整数的计算方法进行计算。

11、刚才的问题同学们解决得非常好,那么接下来同学们还能顺利过关吗?请看大屏幕,出示ppt加法问题。指名读题(可多找两个,比比谁读得更好,并给予鼓励)

12、生列式师板书,然后让生根据我们刚刚学过的一位小数加法的计算方法来试着计算一位小数的减法。分组讨论。

13、反馈。指名生将自己的计算过程写到黑板上,集体订正。并提问计算小数减法时应该注意什么?

14、小结一位小数减法的计算法则。

15、练习。

7.5-3.2= 9.8-6= 4.5-3.5=

(1)指名到黑板上做,其余做练习本上。

(2)集体订正,并强调最后一道题的结果1.0也可以直接写1。

三、数学医院。

2 6 . 5 1 3 . 2 5 . 3

+ 7 . 2 + 7 _ 2 . 1

__________ __________ _________

9 8 . 5 1 3 . 9 3 . 4

四、全课小结。

同学们,不知不觉这节课即将结束了,这节课你们学得开心吗?(开心)那请同学们大声地告诉老师这节课你学习了什么知识呀?(一位小数的加减法)那我们在做一位小数加减法的过程中应该注意什么问题呢?(小数点对整齐)

《小数乘小数》的教学设计 篇八

教学目标:

1、知识与技能:理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。

2、过程与方法:结合具体事物,经历自主探索小数乘小数的的计算方法的过程。

3、情感态度与价值观:积极参加数学活动,培养迁移类推能力,获得借助计算器和运用自己的知识解决问题的成功体验。

教学重点:

掌握小数乘小数的方法,会熟练的进行笔算。掌握小数末尾的0的处理方法。

教学难点

因数的小数位数与积的小数位数的关系。

教学准备:多媒体课件

教学过程的设计

一。情境导入

1、师:同学们,如今我们的生活水平有了很大的提高,住房条件也有了很大的改善,很多同学都住进了新房,聪聪家最近也换了套新房,现在老师就带你们去看看。瞧!这就是聪聪家的客厅。(课件出示) 通过观察平面图,你想知道什么?能提出什么数学问题?

(设计意图:直接导入,课件展示聪聪家的客厅平面图,容易激发学生学习的兴趣,进而诱发学生主动解决问题的内驱力。)

2、 生提问题。

3、 师:同学们提出了很多有价值的问题。如果要求的聪聪家客厅的面积有多大,该怎样列式呢?(板书:4.8×3.6)观察算式的两个因数,你发现了什么?

生:算式的两个因数都是小数。

生:两个因数都是一位小数。

4、师:同学们观察的很仔细,今天我们就来探讨“小数乘小数的计算方法”。

板书课题:小数乘小数

(设计意图:从计算房间的面积这一实际问题引入,容易激发学生的学习兴趣。小数乘小数的重点是小数点的书写位置,让学生观察题中因数的特点,主要目的是为了确定积中小数的位数打基础。)

二、探究新知

1、推导笔算方法

①、提出估算要求,

师:计算之前我们先估算一下,聪聪家的客厅面积大约是多少平方米?让学生说一说自己是怎样想的?

生:把3.6看作4,把4.5看作5因此:3.6×4.8≈20

也就是说聪聪家客厅的面积不到20平方米。

(设计意图:培养学生估算的意识,使学生养成“先估算,在计算”的习惯,提高计算的正确率,未确定竖式计算结果做铺垫。)

②、提出竖式计算的要求,讨论两个因数都是一位小数怎么办?

教师板书:

4.8

× 3.6

1、回忆小数乘整数的计算方法。

2、提问: 两个因数都是一位小数怎么计算?可以转换成整数乘法来计算吗?

3、让学生说出算理,独立试一试,指名汇报答案。学生上台板演。

4、确定积的小数点的位置,并说明理由。

(设计意图:“问题讨论”是学生把已有的知识迁移到新知识的过程,是理解算理的过程,是发展学生教学思维的过程。)

③、分析算理。

我们一起在原式上做一做。(边说边板书).

思考:1. 乘数中的两个因数是如何转化成整数计算的?

2. 用整数相乘的方法算出48×36的积以后怎么办?

3. 要得到原来的积,应该怎么办?

4、小数点应该点到哪里呢?

教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1728除以100,从积的右边起数出两位点上小数点。所以3.6×4.8的积是两位小数。

④(教师出示课件),显示算理的全过程。指名学生结合竖式,再次说出小数乘小数的计算方法,

(设计意图:让学生经历用竖式计算方法的形成过程,掌握计算方法。)

2、沙发的占地面积,

①、提出问题:刚才我们求出了聪聪家客厅的面积,聪聪家的客厅里还有一个漂亮的沙发,(出示课件)生观察图,说出了解到的信息和要解决的问题。

②师:求沙发的占地面积是多少平方米,该怎样列式呢?

学生可能说出不同的算式,教师肯定并板书。

0.85×1.8

师:同学们看一看这个算式的两个因数,你发现了什么?

生:这个算式中的两个因数都是小数。

生:两个因数一个是一位小数,一个是两位小数。

(设计意图:了解题中的数据信息和问题,列出算式,了解因数的特点,为竖式计算做准备)

③师:这样的两个小数相乘,用竖式计算怎样算呢?(教师强调小数乘法列竖式是不要把小数点对齐,要把因数的末尾数对齐。)

教师板书竖式:

生:学生试算,指名学生到黑板上板演,并让板演的同学说一说自己计算的方法。

学生完成板书:

师:用整数乘法的方法计算出积以后怎么办?

生:回答,师在竖式中点上小数点。

师:告诉学生在横式中写得数时,根据小数的基本性质,小数末尾的0可以不写。

完成横式:

0.85×1.8=1.53(平方米)

④师:(出示课件)再次显示小数乘法的计算方法与过程。

(设计意图:让学生自己尝试计算,既检验学生掌握计算方法的程度,用便于解决计算中数学问题,提高学习效率。)

⑤师:用竖式算的对不对呢?请同学们用计算器检验一下。

学生计算交流。

(设计意图:通过自己检验计算结果,确信计算方法的正确性)

三、归纳总结

让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。师生共同总结归纳小数乘小数的计算方法。

出示问题:观察比较,总结算法。

1、例题中的两个因数分别是几位小数?积是几位小数?

2、通过比较,你发现上面两题中两个因数与积的小数位数有什么关系?

3、你知道计算小数乘小数时,要先干什么,后干什么吗?小数点的位置是

如何确定的?

师总结算法:小数与小数相乘,先按照整数乘法的算法求出积,再看因数中

一共有几位小数,就从积的右边数出几位,点上小数点。(课件播放)

(设计意图:在观察、讨论的过程中,发展学生的数学思维,经历有个性的经验提升为数学方法的过程。)

师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,根据这种关系,我们不计算,就能判断积的小数位数。

四、尝试应用

1、聪聪家的客厅里还有一个漂亮的茶几,(出示课件)生观察图,说出了解到的信息和要解决的问题。

师:求茶几的占地面积是多少平方米,该怎样列式呢?

学生说,教师板书:0.45×0.9=

师:估计一下,0.45×0.9的积有几位小数?为什么?

生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。

师:请同学们试着用竖式计算。

学生自主笔算,教师巡视,个别指导。请一名好学生板演。请板演的同学说一说确定小数点时是怎样想的。

生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。

(设计意图:让学生用已有的知识尝试解决问题,先估计积有几位小数,为自主计算打基础。让好学生板演,减少教师板书的时间,提高学习效率。)

2、师:说的很好,下面我来考考你们。

出示“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。

师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?

生:看两个因数一共有几位小数。

(设计意图:让学生在练习中★WWW.SHUBAOC.COM★熟练应用并巩固因数中小数位数与积的小数位数的关系。)

五、全课小结:通过今天这节课的学习,你有什么收获?

小数乘小数的教案 篇九

教学目标

1、使同学掌握分数、小数四则混合运算的运算顺序和计算方法,并能正确地进行计算。

2、训练同学认真审题,能够选择合理简便的解题方法。

3、培养同学良好的学习习惯和正确、合理、灵活、迅速的`运算能力。

教学重点和难点

教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

教学难点:灵活、合理地运用不同的方法进行计算。

教学过程设计

(一)复习

1、第74页第1题。

(1)把下面的小数化成分数:

0.125 0.3 0.5 0.6 0.25 0.75

(2)把下面的分数化成小数:

以上各题用投影片出示,指名口答。

2、我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

下面各题用什么方法进行计算比较简单?

提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。