1. 主页 > 范文大全 >

高考数学答题技巧通用10篇

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。以下是高考家长帮勤劳的编辑为家人们找到的高考数学答题技巧通用10篇,欢迎阅读。

高考数学答题技巧 篇一

一、难题先跳过手热好得分

周洁娴,毕业于华师一附中理科班,高考664分。

说到去年高考数学和理科综合,周洁娴仍心有余悸。数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。“我感觉脑袋也像机器,需要预热!”

二、开头最易错回头可救分

“基础题得分和丢分都很容易。”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。

陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。“既然得不到难题分,一定要保证简单题不错。”

周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。

三、时间很宝贵掐表做综合

对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。

周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。

毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。答题时,应先做自己最拿手的科目。

四、审题别偷懒用时别吝啬

“不集中精力仔细审题,一不留神就丢分。”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。

“要留意题目的所有条件。”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。

“文科综合更是重在审题。”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。高三阶段做了太多训练,高考时会遇到似曾相识的题,如不仔细看题就会按往日做过题的答案填写。高考答题就算遇到再熟悉的题目,也要把题目审完。

五、相信第一感改动需谨慎

毕业于武钢三中的田钰笙,去年高考以667分考入清华大学。“做听力的第一感觉很重要。”田钰笙说,英语(论坛)听力一般是一步到位,很难有机会检查,除非是自己完全瞎猜,否则不要轻易改动第一感觉选出的答案。

现已是北大数学学院大一学生的。王静姝也认为,第一感觉答卷确实很重要,尤其是语文、英语两科。没有十足的把握,不要轻易改动。作文写作时,应该打草稿,一旦确定了基本框架和思路,就一路写下去,不要做大段修改。

六、步骤写清楚分分要计较

“写好步骤让我得了便宜。”去年毕业于武汉三中的黑马黄超介绍,自己高考结果好是因为物理大题得了不少步骤分。

黄超说,高考时理综物理部分最后两道大题都很难,他做得并不顺利。但按老师的要求,将自己能想到的解题思路和步骤都写了上去,虽然没有得出最后结果,但也得了总分的一半以上。

七、答题看规则草稿要规范

刘恋念介绍,理科综合是自己的强项,高考考了260多分。她提醒,理综科目做物理部分时一定要注意多选题部分。物理多选题的规则是错选不得分,选不全得部分分。因此,考生答题时一定要注意,选择的每个选项一定要自己有充分把握,否则宁可保一半的分,也不要强行冒险。

“打草稿也应注意技巧。”秦逸说,特别是理科考生打草稿千万不要马虎。最好也排好顺序并在草稿边写上题号,同时也要简单写下计算式和计算结果。这样检查时,考生能更快速检查答题思路。

八、字迹要工整

秦逸说,去年语文的现代文阅读,文章有点奇特,通读后不太明白,有点着急。稳定情绪后又反复读了两遍,才想出解题眉目。“现代文阅读再懂也不要急。”特别是文科考生,遇到难题不妨从出题角度去思考,稳定情绪仔细推敲,只要复习到位肯定能够判断出来。

“因为书写丢分最可惜。”佘晔介绍,除了心态,书写也是最容易导致非智力失分的因素。特别是文科考生,答题书写量很大,有时字迹潦草不清,如果涉及到得分点,很可能因此而扣分。

九、积极暗示多发挥易超常

秦逸说,如果考生进入考场无法平静,一定要多做点放松式的心理暗示。高考时自己担心考英语会困,于是在考前喝了一杯咖啡,“喝了咖啡,等会一定精神超级好”,结果考试果然精神抖擞。对于紧张时爱上厕所的考生,可暗示自己,“其他事都处理好了,惟一的事就是细心答卷”。

“遇到难题就告诉自己做过。”王静姝介绍,考数学时,自己最后一道选择题做错了。事后她才知道,这题和平时训练过的一道题很类似。对此她提醒,经过平时的训练,考生已对各种类型的题目做过反复准备。碰到难题时,先深呼吸三秒,可回忆平时有关的训练题,会有意想不到的收获。

十、保持好的心态平常心对待

高考前,考生肯定已经经历过很多次统考、模考了,临场不要慌乱,保持好的心态。用平常心对待最能正常发挥甚至超常发挥。

最后忠告学生考前要从以下两个方面做好准备工作:

①临考试的前一天,用一张纸或硬卡片列出考场需要带的东西,每次去考点前都要按所列进行检查。如有可能要在考前先去一下考点,找一下考场,,熟悉一下环境。

②考试那天,要穿着舒适,不要使服装的色彩和样式特殊,以免引起考生及监考老师的过多注意,以免答题分心。

考试策略

①认真阅读考试说明和注意事项。以免弄错某一项内容丢分,考后令人遗憾。

②答题时先易后难,稳扎稳打。做题时最好一次成功,不要期望全部做完后,再认真检查(往往时间不够),就是有检查时间,也不要盲目改正答案,因为做题时第一印象成功率较高。

③只要不倒扣分,尝试回答所有问题。

④检查技巧,主要检查有没有漏做的考题。涂卡有无对错题号的。

高考数学答题技巧 篇二

一、调整好状态,控制好自我。

(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5~10分钟内。建议同学们提前15~20分钟到达考场。

二、通览试卷,树立自信。

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

三、提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。8个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求 “快、准、巧”,忌讳 “小题大做”。 填空题也是只要结果、不要过程,因此要力求 “完整、严密”。

四、审题要慢,做题要快,下手要准。

题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

五、要牢记分段得分的原则,规范答题。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

难题要学会①缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。今年仍是网上阅卷,望大家规范答题,减少隐形失分。

灵活调整时间。时间分配的目的是为了考试成功,要灵活掌握,随时巧变,不要墨守常规。

高考数学答题技巧 篇三

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

高考数学答题技巧及方法

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高考数学解题技巧 篇四

高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。现总结了十大选择题的解题技巧,帮助同学们提高答题效率及准确率。

1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学答题技巧 篇五

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。

数学解题技巧 篇六

1、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

2、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

3、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

4、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

5、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

高考数学解答题怎么做 篇七

一、三角函数题

三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类:

1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。

2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

3.解三角形问题,判断三角形形状,正余弦定理的应用。

注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“ 累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。

3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。

全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,切实掌握好线面平行性质定理、面面垂直的性质定理,这两个定理不会用是失分的关键,解答过程不严格是扣分的主要因素。

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反、注意计数时利用列举、树图等基本方法;

5、注意条件概率公式;注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。

高考数学答题技巧 篇八

一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。1.先易后难。2.先熟后生。3.先同后异。先做同科同类型的题目。4.先小后大。先做信息量少、运算量小的题目,为解决大题赢得时间。5.先点后面。高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。6.先高后低。即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。在以快为上的前提下,要稳扎稳打,步步准确。假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊,化抽象为具体。对不能全面完成的题目有两种常用方法:1.缺步解答。将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。2.跳步解答。若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。 理综 求准求稳求规范

第一:认真审题。审题要仔细,关键字眼不可疏忽。不要以为是“容易题”“陈题”就一眼带过,要注意“陈题”中可能有“新意”。也不要一眼看上去认为是"新题、难题”就畏难而放弃,要知道“难题”也可能只难在一点,“新题”只新在一处。

第二:先易后难。试卷到手后,迅速浏览一遍所有试题,本着“先易后难”的原则,确定科学的答题顺序,尽量减少答题过程中的学科转换次数。高考试题的组卷原则是同类题尽量按由易到难排列,建议大家由前向后顺序答题,遇难题千万不要纠缠。

第三:选择题求稳定。做选择题时要心态平和,速度不能太快。生物、化学选择题只有一个选项,不要选多个答案;对于没有把握的题,先确定该题所考查的内容,联想平时所学的知识和方法选择;若还不能作出正确选择,也应猜测一个答案,不要空题。物理题为不定项选择,在没有把握的情况下,确定一个答案后,就不要再猜其他答案,否则一个正确,一个错误,结果还是零分。选择题做完后,建议大家立即涂卡,以免留下后患。

第四:客观题求规范。①用学科专业术语表达。物理、化学和生物都有各自的学科语言,要用本学科的专业术语和规范的表达方式来组织答案,不能用自造的词语来组织答案。②叙述过程中思路要清晰,逻辑关系要严密,表述要准确,努力达到言简意赅,切中要点和关键。③既要规范书写又要做到文笔流畅,不写病句和错别字,特别是专业名词和概念。④遇到难题,先放下,等做完容易的题后,再解决,尽量回忆本题所考知识与我们平时所学哪部分知识相近、平时老师是怎样处理这类问题的。⑤尽量不要空题,不会做的,按步骤尽量去解答,努力抓分。记住:关键时候“滥竽”也是可以“充数”的。

高考数学解题技巧 篇九

一、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。

二、特殊化法

当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。

三、数形结合法

"数缺形时少直观,形缺数时难入微。"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

四、等价转化法

通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。

数学里常用的几种经典解题方法介绍:

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

高考数学答题技巧 篇十

高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。

一、知识整合

1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法--化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.

2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数 的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.

二、高考考点分析

20xx年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次:

第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。

第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。

第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。