1. 主页 > 范文大全 >

高二数学教案优秀5篇1-12-80

作为一位杰出的教职工,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么优秀的教案是什么样的呢?下面是人美心善的小编给大伙儿整理的5篇高二数学教案,欢迎阅读,希望可以帮助到有需要的朋友。

高二数学公开课优秀教案 篇一

高二数学教案优秀5篇1-12-80

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

复习引入:

向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

高二数学教案 篇二

一、教学目标设计

1. 了解利用科学计算免费软件--Scilab软件编写程序来实现算法的基本过程。

2. 了解并掌握Scilab中的基本语句,如赋值语句、输入输出语句、条件语句、循环语句;能在Scipad窗口中编辑完整的程序,并运行程序。

3. 通过上机操作和调试,体验从算法设计到实施的过程。

二、教学重点及难点

重点: 体会算法的实现过程,能认识到一个算法可以用很多的语言来实现,Scilab只是其中之一。

难点:体会编程是一个细致严谨的过程,体会正确完成一个算法并实施所要经历的过程。

三、教学流程设计

四、教学过程设计

(一)几个基本语句和结构

1、赋值语句(=)

2、输入语句 输入变量名=input(提示语)

3、输出语句 print() disp()

4、条件语句

5、循环语句

(二)几个程序设计

建议:直接在Scilab窗口下编写完整的程序,保存后再运行;如果不能运行或出现逻辑错误

可打开程序后直接修改,修改后再保存运行,反复调试,直到测试成功。

高二数学教案 篇三

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为R

2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

高二数学优秀教案 篇四

教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

教学重点与难点

重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假

教学过程

一、复习回顾

引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

二、新课教学

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)若直线a∥b,则直线a与直线b没有公共点.

(2)2+4=7.

(3)垂直于同一条直线的两个平面平行.

(4)若x2=1,则x=1.

(5)两个全等三角形的面积相等.

(6)3能被2整除.

讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

抽象、归纳:

1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1:判断下列语句是否为命题?

(1)空集是任何集合的子集.

(2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗?

(4)若平面上两条直线不相交,则这两条直线平行.

(5)=-2.

(6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

2、命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

(1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分.

(3)若a>0,b>0,则a+b>0.

(4)若a>0,b>0,则a+b<0.

(5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

3、命题的分类

真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

强调:

(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.

(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

判断一个数学命题的真假方法:

(1)数学中判定一个命题是真命题,要经过证明.

(2)要判断一个命题是假命题,只需举一个反例即可.

例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:

(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

三、巩固练习:

P4第2,3。

四、作业:

P8:习题1.1A组~第1题

五、教学反思

师生共同回忆本节的学习内容.

1、什么叫命题?真命题?假命题?

2、命题是由哪两部分构成的`?

3、怎样将命题写成“若P,则q”的形式.

4、如何判断真假命题.

高二数学优秀教案 篇五

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1、定义域:y=sinx的定义域为R

2、值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]