数字的世界显得冷冰冰且纯净如水晶,它可以给我们带来最为稀缺的事物,那便是“绝对准确”。为了大家学习方便,这里快回答为大家分享了14篇苏教版数学六年级上册教案,希望在苏教版六年级上册数学教案的写作这方面对您有一定的启发与帮助。
小学六年级上册数学教案苏教版 篇一
认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。
看懂并能简单地分析扇形统计图所反映的情况。
看懂并能简单地分析扇形统计图所反映的情况。
一、导入
1、同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况?
2、收集和整理数据,统计全班最喜欢的各项运动项目的人数,制成条形统计图。
二、新授
1、观察条形统计图,你从中得到了哪些有用的信息?
2、从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)
3、生成扇形统计图。引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)
4、根据统计图上表示的情况,你对我班同学有哪些建议?
5、回顾知识生成,归纳扇形统计图的特点和作用。
6、“做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)
三、应用练习
1、练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)
2、练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)
四、总结
学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。
五、教学追记:
扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图特点的认识。
苏教版六年级上册数学教案 篇二
(1)如果这10只船都是小船,那么一共可以做多少人?
(2)30人与42人比较,少了几人?为什么会少12人呢?
(3)有一只大船被当成小船会少出几人?
(4)一共少12人,说明有几只大船被当成小船?
(5)列式计算。
5、小组汇报(二):假设大船与小船都是5只。
要求学生汇报后,全班共同填教科书191页表格,并解决问题。
三、巩固反思,提升策略。
练一练
1、学生先读题,独立完成并汇报。如果假都是兔,你能设计这样的四个问题吗?小组讨论完成,并汇报。
读题理解题意。提问:要算到怎样才能够解决问题?
2、学生独立完成,并汇报。
四、全课总结:
这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?第三课时解决问题的策略练习
教学目标:
1、使学生在解决实际问题的过程中进一步学会运用替换和假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。 3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问的成功体验,提高学好数学的信心。
教学重、难点:
1、教学重点:用“替换”和“假设”的策略解决实际问题。
2、教学难点:选择合理的策略有效的解决问题。
教学过程
一、策略回忆
提问:前两节课,我们学习了什么内容?你在解决这些问题的时个有什么诀窍,或说关键是什么?可以讨论一下再回答。
二、巩固提升
练习十七第2题。
1、读题:
2、你准备用什么策略来解决这个问题?
3、准备怎样替换?关键是什么?
4、学生独立完成并检验。
练习十七第3题:
1、读题
2、你准备用什么策略来解决这个问题?
3、准备怎样假设?关键是什么?
4、学生独立完成并检验。
练习十七第4题:
学生独立完成。完成后同桌说说解题的想法?鼓励学生用不同方法解答。
三、你知道吗?
一起读一读,你能理解题意吗?你会解答吗?
苏教版六年级上册数学教案 篇三
解决问题的策略
教学内容:
教科书第89-90页的例1、“练一练”,练习十七第1题。
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
提问:现在老师在天平的左边放上两个菠萝,要使得天平平衡,右边可以放些什么?追问:还可以怎么放?
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(1)小明把720毫升果汁倒入9个相同的小杯,正好都倒满,每个小杯的容量是多少毫升?
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法——替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
谈话:解这题时,我们可以把大杯换成小杯来计算,也可以把小杯换成大杯来计算,那你觉得这两种方法之间有何共同之处?
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
追问:把小盒换成大盒也能做吗?把原来的5个小盒换成5个大盒,现在这7个大盒中,一共装了多少个球?
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的数量。
四、巩固练习
1.用33元钱正好可以买12本练习本和8本硬面抄,练习本的单价是硬面抄的1/4。练习本和硬面抄的单价各是多少元?
2.一袋薯片比一盒巧克力便宜3元。妈妈买了8袋薯片和15盒巧克力,一共花了91元。薯片和巧克力的单价各是多少元?
3.练习十七2(机动)
解决问题的策略
——替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
三、培养学生的探索精神和创新能力。首先,解决问题需要学生根据具体问题情境去主动探索,这本身就有利于培养学生的探索精神;其次,任何数学问题的解决,只有通过对已掌握的知识和方法的'重新组合并生成新的策略和方法才能实现问题的解决。所以这个过程又是一个创新的过程,它
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
苏教版数学六年级上册教案 篇四
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重难点
教学重点
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点
理解圆上的概念,归纳圆的特征。
教学工具
课件
教学过程
一、活动一:演示操作,揭示课题
课件出示“大家都来当裁判喽!”
演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。
让学生初步感知圆在生活中的应用。
二、活动二:动手操作,探究新知
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。
教师提问:折过若干次后,你发现了什么?
仔细观察一下,这些折痕总在圆的什么地方相交?
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。板书:半径
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 d来表示。板书:直径
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1、p58的“做一做”第1、3、4题
2、练习十四的第2、3题
(四)圆的画法。
1、学生自学,看书57页。
2、学生试画。
3、学生通过试画小结用圆规画圆的方法,注意的问题。
4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5、学生练习
p58的“做一做”第2题
(五)教师提问
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
三、全课小结
这节课我们学习了什么?通过这节课的学习你有什么收获?
四、作业
练习十四的第1题
课后习题
练习十四的第1题。
六年级上册数学教案苏教版 篇五
教学目标:
1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
教学重点:
理解比例的意义,探究比例的基本性质。
教学难点:
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
教学过程:
一、创设情境,设疑激趣
同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?
学生思考回答(挖掘学生生活经验)
同学们知道的真多,说明同学们平时认真观察,是个有心人。
二、引导探究,自主建构
活动一:探究比例的意义
1.你了解到哪些关于国旗大小的知识?
学生交流,给学生充分的交流机会。
2.你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?
(1)猜测
预设:生1、长和宽的比值相等;生2、宽和长的比值相等,
(2)小组验证
每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。
(3)展示交流小组验证结果,学生到黑板前板书得出结论。
预设:每种国旗的长和宽的比都是3:2,他们的比值相等。
每种国旗的宽和长的比是2:3,他们的比值相等。
教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成 240:160=144:96 或 240/160=144/96
我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的两项叫做比例的(内项)。括号中的可以让学生说一说。 你能说出一个比例吗?说一说你是怎么理解比例的?
怎么判断两个比是不是成比例?
试一试,判断下面哪组中的两个比可以组成比例。
2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4
活动二:探究比例的基本性质
1.利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?
2.小组内验证猜测结果
3.展示验证猜测情况。得出结论,
预设:
“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。
“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。
教师归纳总结。
同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
板书:比例的基本性质。
谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)
三、强化训练、应用拓展
同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?
1.判断下面哪组中的两个比可以组成比例?
(1) 6:9和 9:12
(2)1/2:1/5和5/8:1/4
(3)1.4:2 和 7:10
(4) 0.5:0 .2和10:4
2.判断。
(1)表示两个比相等的式子叫做比例 ( )
(2)0.6:1.6与3:4能组成比例 ( )
(3)如果4a=5b,那么a:b=4:5( )
3.填空
5:2=80:( )
2:7=( ):5
1.2:2.5=( ):4
在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是( )。
在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是( )。
4.写出比值是5的两个比,并组成比例
5.根据3a=5b把能组成的比例写出来。
四、自主反思、深入体验
通过这节课的学习你有什么收获?
小学六年级上册数学教案苏教版 篇六
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
弄清单位“1”的量,会分析题中的数量关系。
分析题中的数量关系。
多媒体课件
一、旧知铺垫(课件出示)
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新知探究
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:
买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。
解:设买来大米x千克。
x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(3)学生试画出线段图。
(4)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(5)根据等量关系式解答问题。
(6)解:设航模小组有χ人。
χ+χ=25
(1+)χ=25
χ=25÷
χ=20
答:航模小组有20人。
三、课堂小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、当堂测评
练习十第4、12、14题。
学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。
六年级上册数学教案苏教版 篇七
一、教材内容
人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点
认识负数的意义。
四、教学过程
(一)谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
(二)教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流
……
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”
(1)看一看、读一读
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨: -18 ℃~-5 ℃
北京: -6 ℃~6 ℃
深圳: 15 ℃~25 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
5.练一练
读一读,填一填。
6.出示课题
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
苏教版六年级上册数学教案 篇八
分数乘法
教学目标:
1.知识目标:
使学生进一步掌握分数乘法的计算方法,能正确解决分数连乘的简单实际问题,拓展分数乘法意义的理解。
2.能力目标:
使学生经历解决问题的探索过程,进一步培养观察、比较、分析的能力。
3.情感目标:
感受数学知识和方法的应用价值。
教学重点:
能正确计算分数连乘的计算。
教学难点:
能用分数连乘的方法解决实际问题。
教学准备:
教学光盘。
第五课时
教学过程:
一、复习引入
1.下面每个条件分别是以谁为单位“1”的。
23
a是b的3b是c的5
口答,说说可以列成什么数量关系?
2.今天我们继续学习有关分数乘法新的内容。
板书课题:分数连乘。
二、教学新课
1.教学例6。
(1)理解题意。
83
这里的9和4分别是哪两个量比较的结果?比较时分别把哪个数量看作单位“1”的?三班做的朵数和谁有关?
二班做的朵数和谁有关?
(2)画图分析。
画一条线段表示一班所做绸花的朵数。
可以怎样表示二班做的绸花朵数?
怎样表示三班做的绸花朵数呢?
(3)讨论方法。
要去三班做了多少朵,要先算什么呢?怎样算?
讨论交流,汇报方法。
2.完成练一练。
独立完成计算,展示作业。
说说计算时要注意什么?
三、巩固练习
1.完成练习九第6题。
独立完成,集体核对。
2.完成第7题。
要求四年级去了多少人,先要算什么?为什么要先算五年级去了多少人?怎样算?说说每一步求的是什么?
3.完成第8、9题。
理解题意,弄清解决每一个问题时要先算什么,再算什么?
列式解答。
四、课堂小结
今天学习了什么内容?你对自己的表现满意吗?
苏教版六年级数学上册教案 篇九
教学内容:
冀教版小学数学六年级上册80-81页。
教学目标:
1.过程与方法:结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2.知识与技能:了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3.情感态度与价值观:体验数学在解决现实问题中的价值,丰富购物经验。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的解释。
教学过程:
一、创设情境、设疑激趣
师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理
购物呢?这节课,我们就来研究购物问题。(板书:学会购物)
二、引导探究、自主建构
活动一:促销
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?
1、学生自学
2、交流
(预设)
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
师:请对这三个商店的促销方式进行一下比较分析,谈一谈各有什么优势?三家店都适合怎样购物呢?
(这里不需学生能精确计算每个商店的优惠额度,但大体上能了解每个商店更适合
2 怎样购物。)
(二)提出问题(1):买1袋这种方便面去哪家商店合适?买2袋、3袋呢?
1、思考
2、全班交流
(预设)师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学
们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5 袋或5 袋以上就可以得到甲店的优惠条件。
(三)提出问题(2):买7袋这种方便面去哪家商店合适?买8袋、9袋、10袋呢?
1 、自己独立思考、计算
2 、全班交流
(预设)
师:现在如果想买7 袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
板书:
甲店:1.5×6=9(元)
乙店:1.5×7×90%=9. 45(元)
结论:甲店合适。
(按以上方法交流买8、9、10袋的结果)
10袋情况预设:
甲店1、1.5×9 =13.5(元)
13.5÷10=1.35(元)
甲店2、1.5×10=15(元)
10+2=12(袋)
1.5 ÷12=1.25(元)
乙店:
1.5×10×90%=13.5(元)
(这里面甲店的第二种购买方法,虽花了15元,但能得到12袋,有的学生会认为这是一种较便宜方案,现实生活中也如此。所以不应按错误定论。)
(四)提出问题(3)买多少袋方便面才能达到丙店的优惠条件?
学生计算后汇报
30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。
(五)提出问题(4)
1、学生独立计算
2、小组内交流
3、全班汇报
师:谁能解释这到底是为什么?
(预设)
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20 袋,20×1.5=30 (元),可以打八折优惠,所以只花了24 元,20×1.5×80%=24(元)
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
继续探究:出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:所以购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优
惠政策,就能够少花钱多购物,这叫“合理购物”。
活动二:有奖销售
(一)师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书81页,读一读上面的销售广告,了解广告中的数学信息。
学生阅读“有奖销售”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
师:根据这则广告,请同学们算一算,这次有奖销售活动的奖品总金额是多少元?中奖率是百分之几?
学生独立思考并计算。然后全班交流。
1、奖品总金额
500×10+100×20+50×60=10000(元)
2、中奖率:(60+20+10)÷1000=9%
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
生:商家每发出一张奖券,说明至少已卖出了100元商品,所以1000张奖券全部发完,
1000×100=100000(元),商家至少卖出10 万元的商品。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000 元,10000÷100000=10%,奖金额最多占销售额的10%。
(四)提出问题(3)
师:很好。如果这10 万元的商品全部按八五折销售,同学们算一算,会让利给顾客多少元?
学生独立思考、计算。
生:100000-100000×85%=15000(元)
继续探究:分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
三、强化训练、应用拓展
红光小学准备买28台电视机。甲、乙两个商家每台电视机原价都是500元,为了做成这笔生意两个商家做出如下优惠
请你算一算,再比一比,为学校拿个主意:到哪个商家购买更便宜?
甲:一次购买20台以上(含20台)的,按七五折优惠
乙:“买十送三”,即每买10台另外免费送3台同样的电视机,不满10台仍按原价计算。
四、自主反思、深化体验
师:通过本节课的学习,你有哪些收获想与大家交流一下?
苏教版六年级上册数学教案 篇十
百分数的意义
[教学内容]
教科书第98——99页例2、练习十九第1——3题。
[教材简析]
本节内容是在学生理解分数意义的基础上进行教学的。百分数在生活中有着广泛的应用,现实世界为百分数的学习提供了丰富的学习素材。例1安排了三个层次的学习活动,引导学生逐步理解百分数的意义。第一层次,呈现学校篮球队3名队员在投篮练习中投篮次数和投中次数的统计表,并提出问题,引导学生通过比较表中分数的大小作出判断。第二层次,将表中的几个分数分别改写成分母是100的分数,并比较它们的大小,初步体会百分数的特点和作用。第三层次,在学生初步感知百分数的特点和作用的基础上,揭示百分数的概念,介绍百分数的读、写方法。在“试一试”与练习中进一步完善和理解百分数的意义,初步体会百分数与分数、比之间的联系,初步了解百分率,为进一步学习百分数积累经验。
[教学目标]
1.知识与技能:使学生在现实的情境中,初步理解百分数的意义,会正确地读、写百分数。
2.过程与方法:使学生经历百分数意义的探索过程,体会百分数与分数、比的联系和区别,积累数学活动经验,进一步反站数感。
3.情感、态度与价值观:使学生在用百分数描述和解释生活现象的过程中,体会百分数与生活的密切联系,增强自主探索与合作交流的意识。
[教学重点]
理解百分数的意义,会正确读、写百分数。
[教学难点]
体会百分数与分数、比的联系与区别。
[教具准备]
课件;课前布置学生收集生活中的百分数。
[教学过程]
一、创设情境,导入新知。
谈话:同学们喜欢看篮球赛吗?说到篮球就会让我们想到一个人,你们知道是谁?(姚明)这里有一项关于姚明的数据统计
(出示)
据统计:姚明在nba比赛中的罚球命中率一向很高,前两个赛季罚球命中率高达81%,但上赛季下降到了78.3%。(两个百分数用红色表示)
教师:大家认识红色的数吗?看到这两个数能知道些什么呢?今天我们共同认识这个新朋友,你知道他叫什么名字吗?
(出示课题:认识百分数)
教师:关于百分数的知识,你想了解些什么?
学生说一说自己的看法。
二、例题教学,引出概念。
1.出示例题,引发探究。
例1:学校篮球队组织投篮练习,王老师对其中三名队员的投篮情况进行了统计分析。
教师:我们来看看比赛的数据显示。
(出示表格)
姓名
投篮次数投中次数
16
13李星明25张小华20
吴力军
3018
教师:如果你是教练,根据这张表格里的数据,你能判断出哪个队员投篮的成绩好一些?为什么?
学生独立思考,并在小组中交流想法。
组织学生在班级中进行讨论,学生可能会提出不同的比较方法,如:谁投中的次数多,谁的成绩就好一些;谁失球的次数最少,谁的成绩就好一些;算投中的次数占投篮次数的几分之几(投中的比率),再比较这几个分数,谁大就表示谁的成绩好一些。
引导学生比较这些方法,并明确最后一种方法是合理的,并在表格的右边增加“投篮的比率”一栏。
2.初步理解百分数的意义。
学生独立计算三名队员投中的比率。
指名报计算结果,教师完成统计表。(出示书上完整的表格)
让学生说一说16/25 、13/20 、18/35分别表示哪个数量是哪个数量的几分之几。
提问:根据上面的计算结果,你能比较出谁投中的比率高一些?
学生自主探索比较的方法。
组织学生在班级中进行交流,学生的方法可以是把三个分数,先两个两个比较,再确定哪个分数最大,或者先把三个分数一次性通分,再比较大小,也可以把它们都改写成小数再比较大小。
谈话:为了便于统计和比较,通常把这些分数用分母是100的分数来表示。
学生按要求独立进行改写。
指名口答改写的结果,教师板演。
提问:64/100表示哪两个数量比较?表示哪个数量是哪个数量的百分之几?
再让学生说一说65/100 、60/100的实际含义。
提问:现在能很快看出谁投中的比率高一些?
学生:张小华投中的比率高一些。
说明:像上面这样表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。
提问:百分数怎样写,怎样读呢?
学生自学课本99页“试一试”上面的内容。
组织学生说一说读法和写法,教师进一步示范64%的读、写法。
提问:百分号相当于分数中的什么部分?用百分号形式写分数,什么变了?什么没变?
学生模仿读一读,写一写。
学生照样子表示出65/100 、60/100,先写出来,再读一读。
提问:读百分数时要注意什么?
说明:百分数不读作“一百分之几”,而要读作“百分之几。”
提问:你能说说黑板上百分数是什么意思?(尽量引出投篮命中率为后面的“百分率”作铺垫)教师:请大家在规定的时间里写些自己喜欢的百分数,要求一个比一个写得好。记时开始。(停,时间不是很长)
师:如果老师要求写十个,请用今天学到的知识描述一下你写了几个。
学生1:我写了5个,我完成了50%
学生2:我写了7个,我完成了70%
教师:如果不直接告诉别人,让别人猜猜你写了几个?
学生1:我还有70%没有完成;
学生2:我写好的接近50%;
学生3:??
[设计意图:创设学生感兴趣话题入手,根据统计表提出“谁的成绩好一些?”引发学生思考,在交流中认识到通过比较三个分数的大小作出判断,并将分数再分别改写成分母是100的分数,从而初步体会到百分数的特点和作用,揭示百分数的概念,在学生自学基础上讨论百分数的读法和写法。学生自主写喜欢的百分数的环节,让学生再次感受了百分数的意义和作用。]
三、分层练习,加深理解。
“试一试”
指导学生做一做。
第(1)题
引导学生:根据“男生人数是女生的45%,如果把女生人数看作100份,那么男生人数相当于这样的多少份?
指名回答男生人数是女生的几分之几,男生与女生人数的比是几比几?
第(2)题
先让学生说一说近视率的含义是什么,再在书上填一填。
提问:通过解答这两题,谁能说一说对“百分数又叫做百分比或百分率”的理解吗?
学生在小组中交流后,在班级里说一说。
明确:百分数的本质是表示两个数量的倍比关系,因此把百分数又叫做百分比或百分率是合适的。
“练一练”第1题
学生看题,理解题意,独立做一做。
做好,交流填写结果。并具体说一说某个百分数表示的实际含义。
说明:百分数可以表示一个整体中的部分与这个整体的关系。
第2题
教师:在日常生活中,你还见过哪些百分数?
在小组里说一说,并说出这些百分数的含义,再组织学生在班级中交流。
练习十九第1题
同座同学互相读一读,并说出每个百分数的含义。
指名分别说一说每个百分数的含义。
教师:从三幅图中分别能知道些什么?你还能说出一些与100%有关的例子吗?
练习十九第2题
学生独立写一写,写好在小组中交流。
组织学生交流写法,并说一说百分数表示的含义。
教师:分母是一百的分数都可以用百分数表示吗?
练习十九第3题
出示题,让学生试着判断,并说明理由。
明确:百分数只表示两个数量的倍比关系,不用来表示某个具体数量。百分数是一种特殊的分数,后面不带单位名称,而分数既可以表示一个具体的数,又可以表示两个数的比,在表示一个具体的数量时,分数后面可以带单位名称。
四、全课总结。
教师:今天这节课你有什么收获?
教师:一个人的收获不仅来自于1%的灵感,更重要的来自于99%的汗水,如果每一节课同学们都能有一点收获,日积月累你们100%会成为一个学识渊博的人。(出示:成功=99%的汗水+1%的灵感)
教师:你能用百分数来描述你这节课的感受吗?
[设计意图:选择现实的素材,让学生读、写百分数,说百分数的含义,既练习了百分数的读法,又巩固了百分数的意义,还能让学生体会到生活中处处有百分数,感受百分数的应用价值。在练习三的第3题学生通过判断,了解了百分数与分数的区别,再次加深对百分数意义的理解。课的结束前学生用百分数描述学习的感受,检验了学生对百分数意义的理解和体会。]
课后反思:
《百分数的意义》是第九单元的第一课时,本课的教学重点之一是理解百分数的意义,教学难点是体会百分数、分数、比的联系与区别。
借助例题的学习,我先出示了三名运动员的投篮情况的统计表,统计表中呈现的是每一名运动员投篮次数和投中次数,然后请学生思考:如果你是教练,怎样判断哪名运动员的投篮成绩好些?学生们经过思考马上想出了办法,交流时即刻有学生说出应该通过比较每人投中次数占投篮次数的几分之几来比较。此时,我立即追问学生为什么,学生们联系以前学习的知识说出了理由:因为每一名运动员投篮次数不相同,不能只看投中次数来判断成绩的好坏。应该说这一部分的导入是相当顺利的。
课前我还布置学生去生活中收集一些百分数,所以课上让学生进行了交流。有些学生找到了衣服商标上的百分数,如:100%羊毛;97.4%棉;葡萄汁70%等。为了帮助学生更好地理解百分数的意义,我请学生们同桌之间先互相说说收集到的这些百分数表示什么意思,然后再请几位学生全班交流,应该说课堂上的学习氛围较好,学生们通过寻找生活中的百分数体会到百分数在生活中的运用,也能更好地理解百分数的意义。
上完本课后觉得不足之处是对于百分数与分数的区别仅仅借助练习十九的第三题是不够的,很多学生还是不理解两者的区别。我想在第二课时中要想办法解决这一问题。
苏教版六年级上册数学教案 第十一篇
可能性
教学内容:苏教版数学六年级上册第八单元---可能性
教学目标:
1.通过学习,使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小。
2.认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
3.进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。教学重点:认识客观事件发生的可能性的大小,能用分数表示可能性的大小。教学难点:能用分数准确表示可能性的大小。
教学过程:
一、创设情境,导入新课
1.用“一定”,“可能”,“不可能”说一句话。
(板书:一定、可能、不可能)
2.出示天气预报的情境:
长沙,11月22日,气温8-16摄氏度,降水概率10%。
问:同学们,看了这个天气预报,你明天出门时会不会带雨伞?为什么?(不会,因为降水概率只有10%,说明下雨的可能性比较小)
3.我们以前只知道用语言描述可能性,而这里的降水的可能性却用了10%这样一个具体的数,一个事情发生的可能性我们也可以用一个具体的数来表示,今天我们就来研究用数来表示可能性的大小。(板书课题:可能性)
二、探究与交流
1.同步体验。
(1)师出示袋子里有一个红球和一个黄球。
问:从中任意摸出一个球,摸到红球的可能性是几分之几?你怎么想的?(任意摸一个球,摸到红球的可能性是1/2。)
问:这里的2表示什么意思?1呢?
(2)老师在口袋中再放入一个绿球。
问:现在任意摸一个球,摸到红球的可能性是几分之几?
(任意摸一个球,摸到红球的可能性是1/3。)
师:都是任意摸一个球,摸到红球的可能性怎么会不同呢?这说明可能性的大小和什么有关?(可能性的大小和球的总数有关。)
板书:球的总数
(3)追问:如果要使摸到红球的可能性是1/5,口袋里该怎样放球?
如果要使摸到红球的可能性是1/20,口袋里该怎样放球?1/100呢?
(5)你有什么发现?分子都是1:表示红球个数;分母都是球的总个数;球的总数越多,摸到红球的可能性越小。
2.迁移与提升
教学例2。
(1)课件出示图。
师:在图中你看到了哪几张牌?
(2)师将6张牌反扣在黑板上。(师边说边演示)从中任意摸一张,摸到红桃a的可能性是几分之几?你是怎么想的?(一共有6张牌,红桃a有1张,摸到红桃a的可能性是1/6。)摸到黑桃a的可能性是几分之几?摸到其它牌的可能性呢?你能用一句话来概括一下刚才同学们所说的可能性吗?
(3)师:看了这6张牌,你还能提出关于可能性的数学问题吗?先自己想一想,然后把你的问题在小组里说一说。
(学生四人为小组活动,互相提问。)
师:大家来交流一下你们提出的问题。
你能具体地说一说,为什么任意摸一张,摸到3的可能性是1/3吗?
小结:从这里我们可以说明可能性的大小不仅和物体总数有关,还和某种物体的个数或张数有关。
(4)对比提升:去掉一张黑桃3,还剩五张,你能用分数表示哪些可能性?同桌互相说一说。
师:“任意摸一张,摸到黑桃的可能性是2/5”。你是怎么想的?能把你的想法和大家说一说吗?
师:如果老师说一个分数,你们能说出怎么拿吗?
师:课后同学们继续可以做这样的游戏,一人说分数,一人拿牌,比一比,谁的思维最敏捷。
三、实践和应用
1.练习十八第1题。
2.生活中的数学问题。课本第95页练一练。
追问:如果把转盘上的指针转动80次,在红色区域的次数一定是10次吗?
3.设计中奖规则:课件出示
超市将在元旦进行中大奖活动,购物满100元,可以到转盘上转1次指针,如果你是超市的老板,你会怎样设计中奖规则?学生凭生活经验阐述。
师提问:为什么大家都认为指针停在红色区域是一等奖?
(指针停在红色区域的可能性最小,有利于商家)
4.完成练习十八第六题。
同学们平时在游戏的时候要想最快决定两个人的胜负经常会用什么方法?(石头、剪刀、布)那你样想过没有,这种决定胜负的方式是否公平呢?
小芳和小娟在做这个游戏,他们获胜的可能性各是多少呢?
出示表格。
把表格填写完整。
回答问题。
我们以后在游戏时就可以用今天所学的知识来判断是不是公平。
四、全课总结,感受价值。
1.提问:今天大家学得开心吗?你有什么收获?
2.联系生活实际,体现用分数表示可能性的价值
师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
苏教版六年级上册数学教案 第十二篇
解决问题的策略
一、教学内容
本单元教学用替换的方法解决实际问题。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。
二、教材的编写特点和教学建议
第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打?利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在“你知道吗”里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。
第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次“练一练”都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里“说说为什么这样替换”“说说解决这个问题的策略”,例2里“你准备怎样来解决这个问题”,都是着眼于体会数学思想,积累数学方法,感受解题策略。
(一)、直观的情境——引发替换。
例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。1
(二)、用多种形式解决问题——突出替换策略。
例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。“你准备怎样来解决这个问题”不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如“猴子”卡通用画图的方法,“兔子”卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。
三、教学目标:
1、引导学生在具体的替换和假设的过程中灵活运用学过的画图和列表的策略,体会不同策略在解决问题过程中的不同价值。
2、初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。
四、教学重点、教学难点:
1、重点:引导学生在具体的替换和假设的过程中灵活运用学过的画图和列表的策略,体会不同策略在解决问题过程中的不同价值。
2、难点:初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。五、课时安排:共3课时
第一课时用替换的策略解决问题
教学目标:
1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重、难点:
1、教学重点:用“替换”的策略解决问题。
2、教学难点:理解“替换”的意义,知道什么样的数量关系可以替换。教具、学具准备:大、小杯子,清水等。
教学过程
一、出示问题,选择策略
1、以图文结合的方式呈现例1,要求学生边读边看图。
2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?
3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?
如果720毫升果汁全部倒入小杯,而且知道正好倒了几个*快回答 www.kuaihuida.com*小杯,你会求出每个小杯的容量吗?
4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?
二、自主探索,运用策略
1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?
结合例题中的示意图提问:
一个大杯可以替换成几个小杯?
(1)把1个大杯替换成3个小杯的依据是什么?
(2)由1个大杯可替换成3个小杯,你想到了什么?
(3)小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。
2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?
(1)提出问题后,要求让学生看图思考。
(2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的”,3个小杯的果汁正好可以倒满1个大杯,6个小杯的果汁正好可以倒满2个大杯。
(3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。
3、列式解答:
引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。
4、检验。
引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生通过计算进行检验,并完成答句。
三、回顾与反思,提升策略
提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?
学生交流、汇报。
四、拓展应用,巩固策略。
1、指导完成“练一练”。
(1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。
(2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?
(3)如果把2个大盒替换成小盒,这时一个就是几个小盒?你还想到些什么?
(4)要求学生根据上述讨论的结果,想办法解决这个问题目。
(5)让学生自主进行检验。
(6)反思小结:解决这个问题的关键是什么?
2、课堂作业:做练习十七第1题。
五、全课总结:通过这节课的学习,你有什么收获和感想?
第二课时用假设的策略解决问题
教学目标:
1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。 2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重、难点:
1、教学重点:用“假设”的策略解决实际问题
2、教学难点:从不同的角度看问题,提出不同的“假设”
教具、学具准备:课件
教学过程
一、出示问题,讨论策略
1、出示例2,读题。
2、小组讨论:你准备怎样来解决这个问题?用什么策略?
3、你准备怎样假设呢?
二、自主探索,运用策略。
1、出示提问:
(1)如果这10只船都是大船,那么一共可以做多少人?
(2)50人与42人比较,多出了几人?为什么会多出8人呢?
(3)有一只小船被当成大船会多出几人?
(4)一共多出8人,说明有几只小船被当成大船?
2、列式计算:
3、你还可以怎样假设呢?你能根据以上的提问,用你的假设方法解决问题吗?(小组讨论)
苏教版数学六年级上册教案 第十三篇
教学目标
(1)能够利用身边的工具测量出圆的周长
(2)能够掌握多种测量计算圆的周长的方法
(3)能够说出圆周率小数点7位
(4)能够了解祖冲之
(5)能够灵活运用圆的周长计算公式进行计算
(6)培养学生逻辑推理能力
(7)对学生进行爱国主义教育
(8)培养学生的观察、比较、概括和动手操作的能力
教学重难点
重点:圆的周长和圆周率的意义
难点:圆周长公式的推导过程
教学工具
ppt课件、视频、篮球、硬币、瓶盖
教学过程
一、讨论探索活动导入
1、展示实物篮球、瓶盖、硬币
揭示主题:圆的周长
2、提问:正方形、长方形的边长是4条边相加就是周长,那圆的周长也和它们一样吗?
3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)
4、提问:圆是没有边长的,它只是一条曲线,你们能利用手中的工具将圆的周长测量出来吗?你们能想几种方法出来?
5、分享测量的方法
方法:化曲线为直线、滚动、软皮尺测、绳绕圆一周
二、了解圆周率
1、提问:观察一下篮球和硬币的直径和周长,你们得出什么结论?
结论:
圆的周长与它的直径有关,直径越大,周长越大
一个圆的周长总是它的直径的3倍多一点
2、提问:有谁知道圆周率是多少吗?
圆周率3.1415926535
3、大家猜一猜圆周率有多少小小数点?
(展示祖冲之图片以及圆周率的发展史)
中国古代数学家祖冲之比外国早1000年第一个把圆周率的值精确到7位小数
圆周率是任意一个圆的周长与它的直径的比值,这个直径是一个固定的数,用字母π表示,它是一个无限不循环小数,π=3.1415926535......取近似值π=3.14
3、播放视频:歌曲名3.1415
三、利用公式计算圆的周长
1、根据圆的周长和直径的关系可以推导出一个圆的周长计算公式,在书上,告诉我是什么?
公式:c=πd或c=2πr
2、提问:求圆的周长需要知道哪些条件?
条件:直径或者半径、π=3.14
3、例题讲解
书上第64页例题
4、做练习题
(展示ppt)
课后小结
圆的周长与它的直径有关,直径越大,周长越大
圆周率π是一个无限不循环小数,π=3.1415926535......取近似值π=3.14
圆的周长公式:c=πd或c=2πr
课后习题
同样的小组成员,测量一个学校圆形的周长,小组的形式合作完成
六年级上册数学教案苏教版 第十四篇
教学通过与学生的实际生活相结合,进一步的增加学生对于利息和成数的认识,课堂以学生和老师的互动结合,加深学生对利息成数的认识。
教学内容:“整理和复习”第1—5题,练习三的第1—6题。
教学目的:使学生对利息、成数等概念有进—步的了解。能够比较熟练地解答有关利息、成数的应用题,将百分数应用于实际生活。
教具准备:幻灯片。
教学过程 :
一、等概念
1.做“整理和复习”第1题。
请一名学生读题。另请两名学生加以回答,教师补充完整。
提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。
2.做“整理和复习”第2题。
请一名学生读题。
提问:“什么叫本金、利息、利率?利息的意义是什么?”
“利息是怎样计算的?”
让几名学生回答。然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金×利率×时间;
3.做“整理和复习”第4题。
请一名学生读题:另请两名学生分别对两个问题加以回答。
4.做练习三的第3、4题。
把全体学生分或两组。一组做第3题,另一组做第4题,答案直接写在课堂练习
本上:教师巡视。及时纠正学生中间出现的错误。最后进行集体订正。
二、复习有关利息、成数的应用题
1.做“整理和复习”第3题:
请一名学生读题。
提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)
“计算利息的公式是什么?”(引导学生看黑板上的公式。)。
让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。
2.做练习三的第1题。
请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:
小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程”。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。
3.做练习三的第2题。
请一名学生读题。
教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。
抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。
4.做“整理和复习”第5题。
请一名学生读题。
提问:“一成五是多少?”
“这道题里单位‘1’是谁?”
“可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)
分别请两名学生回答这两个问题。
请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂练习本上。教师边巡视,边纠正学生出现的错误。最后进行集体订正。
5.做练习三的第5题。
请一名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,集体订正。
三、作业
练习三的第6题。
读书破万卷,下笔如有神。上面就是快回答给大家整理的14篇苏教版数学六年级上册教案,希望可以加深您对于写作苏教版六年级上册数学教案的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。