作为一名人民教师,有必要进行细致的教案准备工作,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!下面这6篇八年级的数学教案是快回答为您整理的初二数学教案范文模板,欢迎查阅参考。
八年级数学教案 篇一
一、课堂导入
回顾平行四边的性质定理及定义
1.什么叫平行四边形?平行四边形有什么性质?
2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
二、新课讲解
平行四边形的判定:
(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
(平行四边形判定定理):
(一)两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?
已知:四边形ABCD中,AB=CD,BC=DA。
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形
(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?
活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?
设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)
八年级数学教案 篇二
教学目标:
【知识与技能】
1、理解并掌握等腰三角形的性质。
2、会用符号语言表示等腰三角形的性质。
3、能运用等腰三角形性质进行证明和计算。
【过程与方法】
1、通过观察等腰三角形的对称性,发展学生的形象思维。
2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。
3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。
【情感态度】
引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。
【教学重点】
等腰三角形的性质及应用。
【教学难点】
等腰三角形的证明。
教学过程:
一、情境导入,初步认识
问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。
可按下列方法做出:
作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。
问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点?
教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。
在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗?
教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。
二、思考探究,获取新知
教师依据学生讨论发言的情况,归纳等腰三角形的性质:
①∠B=∠C→两个底角相等。
②BD=CD→AD为底边BC上的中线。
③∠BAD=∠CAD→AD为顶角∠BAC的平分线。
∠ADB=∠ADC=90°→AD为底边BC上的高。
指导学生用语言叙述上述性质。
性质1等腰三角形的两个底角相等(简写成:“等边对等角”)。
性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。
教师指导对等腰三角形性质的证明。
1、证明等腰三角形底角的性质。
教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调:
(1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。
(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。
2、证明等腰三角形“三线合一”的性质。
【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。
三、典例精析,掌握新知
例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。
四、运用新知,深化理解
第1组练习:
1、如图,在下列等腰三角形中,分别求出它们的底角的度数。
如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。
2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。
第2组练习:
1、如果△ABC是轴对称图形,则它一定是( )
A、等边三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一个外角是100°,它的顶角的度数是( )
A、80° B、20°
C、80°和20° D、80°或50°
3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。
4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。
【教学说明】
等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。
【答案】
第1组练习答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2组练习答案:
1、C
2、C
3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。
4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。
四、师生互动,课堂小结
这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。
学生间可交流体会与收获。
初二数学优秀教案 篇三
知识技能
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质。
2.探究线段垂直平分线的性质。
过程方法
1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。
2.探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。
情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。
教学重点
1.轴对称的性质。
2.线段垂直平分线的性质。
教学难点体验轴对称的特征。
教学方法和手段多媒体教学
过程教学内容
引入中垂线概念
引出图形对称的性质第一张幻灯片
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。
幻灯片二
1、图中的对称点有哪些?
2、点A和A的连线与直线MN有什么样的关系?
理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。
我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
定义:经过线段的中点并且垂直于这条线段,就叫这条线段的'垂直平分线,也叫中垂线。
初二数学教案 篇四
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
初二数学教案 篇五
教学目标
1、使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2、培养学生观察能力,提高他们分析问题和解决问题的能力;
3、使学生初步养成正确思考问题的良好习惯。
教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题。
例1 某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3
答:某数为3
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4
解之,得x=3
答:某数为3
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系、因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?
师生共同分析:
1、本题中给出的已知量和未知量各是什么?
2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3、若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500
所以 x=50 000
答:原来有 50 000千克面粉
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意、即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);
(3)根据相等关系,正确列出方程、即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案、这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义、
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程: 2x=10,
所以 x=5、
其苹果数为 3× 5+9=24、
答:第一小组有5名同学,共摘苹果24个、
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、
三、课堂练习
1、买4本练习本与3支铅笔一共用了1、24元,已知铅笔每支0、12元,问练习本每本多少元?
2、我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元、求1978年末的储蓄存款、
3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、
四、师生共同小结
首先,让学生回答如下问题:
1、本节课学习了哪些内容?
2、列一元一次方程解应用题的方法和步骤是什么?
3、在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案、其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆、
五、作业
1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?
2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3、某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台、这家工厂前年10月生产电视机多少台?
4、大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉、求每个小箱子里装有洗衣粉多少千克?
5、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元、求得到一等奖与二等奖的人数。
初二数学教案 篇六
教学目标
1.知识与技能:领会运用完全平方公式进行因式分解的方法,发展推理能力。
2.过程与方法:经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3.情感、态度与价值观:培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用。
2.难点:灵活地应用公式法进行因式分解。
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题。
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值。
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值。
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。
五、布置作业,专题突破
书山有路勤为径,学海无涯苦作舟。上面这6篇八年级的数学教案就是快回答为您整理的初二数学教案范文模板,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。