作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么应当如何写教学设计呢?快回答分享了9篇小学数学《比的意义》教案,希望对于您更好的写作比的意义教案有一定的参考作用。
《比的意义》教案 篇一
教学目的
1、知识与能力:使学生进一步理解整除的意义。使学生知道约数、倍数的含义,以及它们之间的相互依存关系。使学生知道研究约数和倍数时所说的数,一般指自然数
2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。
3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。
教学重点:
理解整数、约数和倍数的概念。
教学难点:
整数、约数和倍数的联系。
教学过程:
一、复习
1、师:谁能说说整数的含义?
出示:23÷7=3...26÷5=1.15÷3=524÷2=12
教师:这4个算式中,哪个算式中第一个数能被第二个数整除?为什么前两个算式中的第一个数不能被第二个数整除?
让学生观察算式,说说式中被除数、除数和商各有什么特点?
教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?
教师:a的约数还可以叫做什么?
让学生用两种说法说说:15÷3=5和24÷2=12
教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
(1)被除数和除数必须是整数,而且除数不等于0。
(2)商必须是整数。
(3)商的后面没有余数。
师:以上三个条件,缺一不可。
2、区别“除尽”与“整除”
师:像6÷5=1.2这样的除法,一般说6能被5除尽。
被除数和除数
商
整除
都是整数,除数不等于0
商是整数,而且没有余数
除尽
不一定是整数,除数不等于0
商是有限小数,没有余数
二、新课
1、教学约数和倍数的意义。
在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)
让学生看50页关于约数和倍数。
教师:两个数在什么情况下才能说有约数和倍数关系?(整除)
能单独说一个数是约数或一个数是倍数吗?
“倍数和约数是相互依存的。”是什么意思?
:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。
2、教学例1
(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。
教师:15能被3整除吗?
15是3的什么数?
3是15的什么数?
教师指出:这里所说的数一般是指自然数,不包括0。
(2)“倍数”与“倍”的区别
1、基本练习P51做一做
三、巩固练习
1、独立完成练习十一的1、2、3题。
2、第四题
教师:要判断哪些数是60的约数,只要看那哪些数能整除60。
要判断哪些数是6的倍数,就要看哪些数能被6整除。
比的意义教案 篇二
教学内容:教科书第79~81页,练习十八的第1题。
教学目的:
1.使同学比较系统地、牢固地掌握自然数、整数、分数、小数、百分数的意义,以和它们之间的联系和区别。
2.使同学掌握十进制计数法。
教具准备:教师把教科书第80页的整数和小数数位顺序表画在小黑板上。
教学过程:
教师:“同学们回忆一下,我们在小学阶段学习了哪几种数?”(自然数、整数、分数、小数、百分数。)教师接从上到下的顺序板书数的名称。
教师:“今天我们复习与这些数有关的一些知识。”
一、自然数、整数的意义
教师:“什么样的数是自然数?”(l、2、3……)在“自然数”后面板书。
“自然数可以表示什么?”(表示物体的个数。)
“最小的自然数是什么?”(l。)用彩色笔把“ 1”上色。
“最大的自然数是什么?”(没有最大的自然数,自然数的个数是无限的。)
“自然数的单位是什么?”(自然数的`单位是1。)
“任何自然数都是由若干个1组成的。请说出下面几个数各是由多少个1组成的。”教师在黑板上任意写几个自然数,如7、10、25、369、1997……
教师:“一个物体也没有用什么数表示?”(用0表示。)教师板书“0”。
“自然数与0有什么关系?”(自然数都大于0。)教师在“自然数”后面板书“(大于0。)”
“按顺序写数时,0应写在什么位置?”(写在1的前面。)
教师:“我们在小学学的整数都包括什么数?”(自然数和0。)教师板书“整数”并用大括号把自然数和0括起来。
“假如说‘整数就是自然数和0’对不对?”(不对。)“为什么?”(因为整数中还包括比0小的整数。)假如同学说不好,教师可以说明:我们在小学学的整数包括自然数和0,到中学还要继续学习比0小的整数。然后,教师在“0”的下面板书“……(小于0的。)”
综合前面的教学过程,使同学看到如下板书形式。
整数 自然数:1、2、3、4(大于0的。)
……(小于0的。)
《比的意义》教案 篇三
第1课 培养审美的眼睛——美术鉴赏及其意义教学设计
一、 教学目标
本课作为高中整个美术鉴赏教学的开,对后面的教学具有指导意义。通过本课的教学,使学生初步了解什么是美术鉴赏、美术鉴赏的一般过程和特征,以及学习美术鉴赏有什么意义,由此掌握美术鉴赏的方法,培养学生“审美的眼睛”。
二、教学的重点与难点
本课教学的重点:培养审美的眼睛,掌握美术鉴赏的一般方法,认识美术鉴赏对于个人未来人生发展的重要价值和意义。
本课教学难点:主要是如何结合实例讲清美术的主要分类方法、美术鉴赏的概念和美术鉴赏的一般过程或方法。
三、教学方法
讲解法 多媒体教学
四、教学过程
(一)导入新课
同学们,世界上有这样一个地方,它收藏了许多举世闻名的作品,其中有一幅作品它的微笑被后世人称这神秘的微笑,有谁知道这幅作品的。名字?它被收藏在哪?(学生回答:《蒙娜丽莎》 卢浮宫)有没有同学去过?现在我们就一起走进卢浮宫(播放视频《卢浮宫之旅》)。
当我们看到各类美术作品时,大家可能会疑惑,这些作品哪些是好作品,画的什么内容,为什么要这样去表现?如果你有这样的疑问,这其实就涉及到美术鉴赏的问题,因为提问正是鉴赏的开始。
同学们自读课本第2到6页,思考以下问题:
1、什么是美术鉴赏?如何进行美术鉴赏?
2、美术作品的门类有哪些?
3、美术鉴赏的意义与价值?
(二)讲授新课
1.出示图片《天安门广场》《黄山日出》
提问:面对这些景观有何感受?
学生回答:壮观、崇高、神圣
教师:两种不同的美: 一种是自然景观;一种是人文景观。
培养审美的眼睛有两个途径: 一是欣赏大自然;如:黄山、九寨沟瀑布等。
二是欣赏第二自然——由人创造的艺术品。 如:天安门周围的建筑、艺术家的作品等。
2.话题1:什么是美术鉴赏? 怎样进行美术鉴赏?
出示张萱《捣练图》和 米勒《拾穗》,思考:两幅作品有什么相同点和不同点?
学生讨论并思考。
提示:从以下五个方面进行分析:
主题内容
年代
材料
历史背景
作者创作意图
学生回答:相同点:都是一劳动妇女为题材
不同点:前者:贵族妇女 平和优雅的美 画
后者:贫穷妇女 让人产生同情 油画
提问:为什么同题材的作品而给人的感受不同呢?
教师:《捣练图》的作者张萱处于盛唐,他是唐玄宗时期的宫廷画师,“练”是一种丝织品,刚织成时质地坚硬,必须经过沸煮,日晒漂白,再用杵捣,最后才能使丝绸变得柔软洁白,画中分成三组,捣练、理线、熨烫,还有一个年少的女孩淘气的从布底下窜来窜去,可见当时社会稳定,人民生活水平提高,没有血腥的战争和激烈的社会矛盾,因此画面平和优雅。《拾穗》是19世纪法国画家米勒所画,画中3个贫穷的农妇正在捡拾麦田里散落的麦穗,因为当时法国正处贫富差距加大,阶级矛盾尖锐的时期,米勒本身出生在农村家庭,从小在农田里长大,这也决定了他以后的审美取向,歌颂劳动者质朴、勤劳的美德,永远散发着泥土的气息。
以上对两幅作品的分析实际上就是美术鉴赏的全过程。我们在欣赏作品和针对作品思考解决以上问题的过程,其实就已经进行了美术鉴赏。
出美术鉴赏的概念:美术鉴赏就是运用我们的感知、经验和相关知识对美术作品进行感受、体验、联想、分析和判断、从而获得审美感受。
怎样去鉴赏?具体地说,就是要弄明白一件美术作品的作者、创作年代、材料、语言形式和表达内容、以及作品产生的社会历史背景等等。
3.话题2:美术作品的门类有哪些?
请学生们从课本中找出答案并大声朗读出来,教师出示图片让学生们更深入了解。
教师:
根据其艺术门类划分为:
绘画、雕塑、建筑、设计(工艺)、书法(篆刻)、摄影等六大类。
绘画按材料和功能:油画、画、水粉画、水彩画、版画、年画、壁画等等。
雕塑按空间:圆雕、浮雕。
设计按内容和材料:服装设计、工业设计、广告设计、环境艺术设计、家具设计、页设计等。
出示郎世宁《白骏图》徐悲鸿《奔马图》和韩美林《奔马》进行比较分析,谈谈这三幅作品的造型手法有什么不同?
按形式语言上划分为: 具象艺术 意象艺术 抽象艺术
4.话题3:美术鉴赏对我的人生真的那么重要吗?(美术鉴赏的意义与价值)
衣、食、住、行只是最简单的生存层面,它们都离不开美术,自然也离不开美术鉴赏。
我们来看一下美术作品带来的价值与功能。
美术从诞生之日起,就承担着自己的社会角色。它的价值与功能主要体现在三个方面:
● 认识功能 ● 教育功能 ●审美功能
认识功能:
通过美术作品的内容或形式,认识不同时代、不同文化、不同民族下的人们的生活、历史、风俗、观念等。 如张萱《捣练图》
教育功能:
美术作品的内容和主题对观众形成和道德上的感染和影响,以培养人们对待自然、社会、人生以及自我的态度。如董希文《千年土地翻了身》
审美功能: 培养人们对美的事物、美的形式的辨别力、敏感性和感受力。如《根扎南国》 吴冠中
(三)课堂作业:
从本书中选取一件你最喜欢的美术作品,进行鉴赏并填写鉴赏报告单。
鉴赏报告单
作 品
年 代
门类(材料)
形式语言
时代背景
表达内容
(四)教学:
艺术来源于生活。培养审美的眼睛,可以更好的观察生活中的艺术。这节课,我们为培养一双审美的眼睛奠定了初步的基础。另外,还请同学们注意,要能欣赏千奇百怪的现代艺术,还必须树立全新的艺术观念,在此基础上,平时多看多分析,定会使审美的能力得到更好的提高。
教学后记:
本课是美术鉴赏的第一课,学生们对美术鉴赏课比较陌生,首先对于新课程改革要做一个介绍,并简要介绍《美术鉴赏》这本教材。这节课,教师讲解比较多,我结合多媒体出示图片,同学们都比较感兴趣,然而,有些班级的学生仍胆子较小,不敢回答,有些班级的学生比较积极,并踊跃回答问题。我发现,教师的引导相当重要,当学生回答不上问题时,要学会从不同角度去引导学生开口,直到引导出他们说出答案。这一节课,我出示了一道课堂作业,主要是检验学生们对于鉴赏知识了解多少,因此,在讲解知识点时,尽量将这些专业术语讲得浅显易懂,这对于以后的学习是至关重要的。上完一堂后,我感觉课堂上要多多师生互动,尽量让学生踊跃去回答,才能激发他们发挥一定的想象力,提高他们的审美能力。
小学数学《比的意义》教案 篇四
比的意义这节课是开启课。是比和比例这一单元的知识核心,对以后的学习有深远的影响。这节课的教学内容是六年制第十二册第47~48页,是该单元的开端。讲好本节课,可以影响一大面,使教师一开始就掌握教学的主动。比的意义是由除法发展而来的,与除法,分数既有联系又有区别。正因为如此,本节课的教学目标确定如下:
理解并掌握比的意义,学会比的读写方法,比的各部分名称;会求比值;能理解比和除法、分数的关系;向学生渗透转化思想。
教学重点:掌握比的意义。
教学难点:把两种量组成比以及在此基础上,进行求比值。
教学关键:理解比和除法的关系。针对上述教学目标,可对教材做如下处理:
一、复旧迁移,导题定向复旧迁移。
主要抓住新旧知识的最佳连结点。即:复习了用除法计算的应用题,为知识的迁移。为学习比的意义平坡架桥。然后由除法转化为另外一种比较两种数量的方法,自然导题定向,提出本节课的教学目标。具体做法是:
1.回答:
(1)分数和除法有什么关系?
(2)除数能否为零?分数的分母能否为零?
2.列式解答:(生口述,师板演)
(1)一面红旗,长3分米,宽2分米。长是宽的几倍?宽是长的几分之几?
(2)一辆汽车,2小时行驶100千米。平均每小时行多少千米?
(3)引入新课刚才复习的这两道题(指板演),都是两种数量进行比较,都是用除法进行计算的,同学们掌握得很好。但是,在日常生活和生产中,两种数量进行比较,还有另外一种方法。这就是今天我们要学习的内容,(板书比)这节课我们要懂得比的意义,会求比值。(板书比的意义)
二、探索发现,总结规律
探索发现,是指在教师的主导作用下,充分发挥学生的主体作用,变重讲轻练为边讲边练,让学生动手、动脑、动口,多种感官参加学习数学知识的活动,实现两次飞跃:一次是从感性到理性的飞跃;一次从理性到实践的飞跃。比如,教学比的意义的时候,要分如下三个层次进行:
1.教学比的意义,比的读写方法,比的各部分名称。
(1)比的意义同学们准确地回答了复习题2中的第1题,用32求出了长是宽的几倍,这是用除法表示长和宽的关系。32也可以写成3比2(板书3比2),表示长和宽的比。问:谁和谁的比是3比2?(长和宽的比是3比2)。32可以表示3比2,23可以表示几比几?(2比3),表示谁和谁的比呢?(表示宽和长的比)。结合第2题,问:1002可以表示为几比几?
表示谁和谁的比?(100比2,表示汽车所行的路程和时间的比。)同学们注意观察这两个例子,谁能说一说什么是比?(答略)教师根据学生的回答概括出:两个数相除又叫做两个数的比。(板书)指名读、齐读比的意义。
(2)比的读写方法除法的运算符号是除号,表示比的符号是什么呢?是比号,写作:(板书),读作比。3比2可以写作3∶2(板书)读作3比2。问:2比3,100比2同学们会写吗?让一名同学到黑板上写,其他同学动手在桌子上写。
(3)比的各部分名称∶是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以比的后项,所得的商叫做比值。(板书如下)3......前项∶......比号2......后项=32=1......比值12
(4)练习(看幻灯银幕)
①说出比的前项、后项和比值。4∶7=47=479∶5=95=14513∶9=139=14915∶29=1529=1529②填空。a.把80本书,分给4个班级,平均每班分到()本书;图书的本数和班级数的比是()。b.学校开运动会,六年一班有10人参加赛跑,7人参加跳高比赛。这个班参加赛跑和跳高的人数的比是()。(5)通过上面两道题的练习,你知道写比时要注意什么吗?小结:写比时,要注意谁比谁,谁是比的。前项,谁是比的后项,次序不能颠倒。
2.教学求比值的方法。
(1)问:什么叫比值?(略)比值的定义掌握了,那应该怎样求比值呢?(用比的前项除以比的后项)。同学们知道了比值的求法,下面就练习求比值。
(2)求比值,并说明算理。32∶85∶2512∶150.8∶37(3)小结:比值是一个数,可用整数、小数和分数表示。
3.教学比和除法、分数的关系。
(1)3∶2=32可见比和除法有着密切的关系,比的各部分相当于除法的什么?(略)(2)分数和除法的关系在复习时同学们回答得很准确,从分数和除法的关系,可以得出比和分数有什么关系呢?(略)结合学生说的比、除法、分数三者的关系,形成比和除法、分数的关系表。
(3)根据比和分数的关系,比也可以写成分数形式。3∶2可写作32,仍读作3比2,不能读作二分之三。
2∶3、100∶2让学生写。
(4)问:比的后项能否为零?为什么?
三、反馈矫正,贯彻始终
是指把系统的某一部分输出的信息回到输入部分的过程。这个过程,除了把信息输送给教师,供教师检查教学效果外,更是学生自我调控的过程。
那么,反馈矫正,贯彻始终,本节课是指在边讲边练之后,还要进行综合练习。综合练习的内容做到由浅入深。先练习写比,又练习判断题,通过正确,错误的对比,使学生明确比、除法、分数三者之间的区别,最后安排发展性练习,写出比并求比值。不但要求写出两个直接量的,还要写出两个间接量的比,如写出速度的比。通过这样的练习,不但让全班同学吃得好,还让尖子学生吃得饱。
比的意义教案 篇五
教学目标:
1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。
2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。
教学重点和难点:
掌握比的意义,建立比的概念,能准确地求出比值。
教学过程:
老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)
导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。
(一)准备题
(事先板书)口头列式解答。
1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?
板书:1002=50(千米)
师:观察上面的两道题,它们有什么共同特点?(都用除法)
(二)讲授新课:比的意义
1、观察练习1。
问:32表示什么?(3是2的几倍。)
谁和谁比?(长和宽比。)
23表示什么?(2是3的几分之几。)
谁和谁比?(宽和长比。)
师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。
板书:长和宽的比是3比2。宽和长的比是2比3。
也就是说,32可以说成3比2,23也可以说成2比3。
提问:3分米、2分米都表示什么?(长度)
师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。
2、观察练习2。
提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?
师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即100∶2可以说成100比2。)
路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的。量:速度。)
3、归纳总结。
师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)
板书:两个数相除又叫做这两个数的比。
4、练一练。(投影)
(1)书法小组有男生6人,女生5人,男女生人数的比是( )比( ),女生人数和男生人数的比是( )比( )。
(2)小红3小时走11千米,小红所行路程和时间的比是( )比( ),这个比表示( )。
提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)
(三)比的写法和各部分名称
师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)
3比2记作3∶2
2比3记作2∶3
100比5记作100∶5
∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。
提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)
比值可以是哪些数?(分数、小数、整数)
练习:你会求比值吗?(板书)
100∶2=1002=50
(老师说明:求比值和解答应用题不同,不写单位名称。)
(四)比、除法、分数之间的关系
师:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生讨论,老师出示投影。
生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。
师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。
提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)
师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成
成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。
提问:比和分数有什么关系?
生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)
师:分数是一个数,所以比同分数也是相当于的关系。
(五)反馈练习
1、第56页的做一做,学生动笔在本上做。
2、(投影)把下面的比写成分数形式。
3、选择答案。
航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是
4、判断正误:(举反馈牌)
(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的
(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。
师:写比要注意比的顺序,前、后项不能颠倒。
(六)课堂总结
今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?
(七)布置作业
(略)
《比的意义》教学设计 篇六
【教材分析】
方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察。比较。分析对其进行分类,最后归纳。概括出方程的意义,培养了学生分析。比较。归纳。概括。创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础
【教学目标】
1.理解和掌握等式与方程的意义,明确方程与等式的关系。
2.通过自主探究。合作交流激发学生的学习兴趣,养成合作意识。
3.感受方程与生活的密切联系,发展抽象思维能力和符号感。
【教学重点】
理解和掌握方程的意义。
【教学难点】
弄清方程和等式的异同。
【数学思想】
符号化思想,转化的思想,数形结合的思想。
一、创设情境,引出问题
教师活动
学生活动及达成目标
1.同学们,谁还记得《曹冲称象》的故事?
2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?
3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。
简单介绍《曹冲称象的故事》
能说出让大象和石头的重量相等,再称石头的重量。
达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。
二、共同探索,总结方法
教师活动
学生活动及达成目标
1.出示天平:让学生说一说对天平有哪些了解?
如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。
2.合作探究。
(1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?
用算式怎样表示呢?
让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)
(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。
教师质疑:如果我往杯子里倒些水,观察天平现在的情况。
师:一杯水的重量是多少,怎样表示?你有办法吗?
追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?
(3)再次让学生观察现在的天平(天平右边放100g砝码),发现了什么?哪边重一些呢?你们能用数学算式来表示吗?
(4)教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况,用数学算式怎样来表示吗?
教师让学生继续操作,怎样才能使天平平衡呢?
这说明了什么?
(一杯水的重量等于250g)
(5)你们能用数学算式来表示这天平的状况吗?
(师板书)
引导学生观察比较这三个算式有什么不同?
lOO+x>200
lOO+x<300
lOO+x=250
师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)
(6)让学生比较50+50=100与lOO+x=250两个等式,有什么不同?
教师小结:像lOO+x=250这样的含有未知数的等式,称为方程。(板书:方程)
(7)引导学生思考归纳小结:
是不是所有的等式都是方程?
是不是所有的方程都是等式?
那么,方程有哪些特点?
(8)让学生仿照课本情境图,自己试着写一些方程。
自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。
让学生自主思考。交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。
用算式表示:50+50=100。
学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。
学生看出在空杯里加一杯水后天平不平衡了。
思考得出:一杯水的重量=水的重量十杯子的重量。
学生汇报:lOO+x
学生回答:天平两边不平衡,用数学算式来表示lOO+x>100
学生观察后分组讨论:
汇报时用式子表示:
lOO+x>200
lOO+x<300。
这时学生很容易发现这杯水的重量大于200g,小于300g。
引导学生把右边的砝码换成250g,使天平左右两边平衡。
学生自主思考,再全班交流汇报:lOO+x=250
生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。
达成目标:通过直观演示活动,在老师引导,学生积极参与讨论。交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考。发现问题和解决问题的能力。
学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。
不是
是
达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。
三、运用方法,解决问题
教师活动
学生活动及达成目标
完成教材第63页“做一做”第1题。
完成教材第63页“做一做”第2题。
让学生说一说什么样的式子是方程,再自主判断,最后集体交流。
先说一说图意,再写方程表示数量关系。
达成目标:通过学生自主分类比较,
调动了学生的主动性和能动性,
让学生自己发现知识的形成过程,
层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比。概括能力和发散思维。
四。反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:66页练习十四第1.2.3题。
拓展练习:见课件
达成目标:孩子大部分应该能发现存在的等量关系,但可能会出现40-28=x这样的式子,应该规范孩子的写法。
五。课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
达成目标:方程的特点:是一个等式,且含有未知数。
1.像lOO+x=250这样含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。
3.方程一定是等式,等式不一定全都是方程。
小学数学《比的意义》教案 篇七
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16 : 4.5:2.7 10:6
学生求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5: 2.4:1.6 60:40 15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象这样表示两个比相等的式子叫做比例。
比例也可以写成: = =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)
2
5
路程(千米)
80
200
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位时,第二栏表示路程,单位千米。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)
你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: 谁能说说什么叫做比例?引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)
(3)比较比和比例两个概念。
教师:上学期我们学习了比,现在又知道了比例的意义,那么比和比例有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的。食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
学生判断后,指名说出判断的根据。
②做P33做一做。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
2、教学比例的基本性质
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是805=400
两个内项的积是 2200=400
你发现了什么?(两个外项的积等于两个内项的积。)板书:805=2200是不是所有的比例都是这样的呢?让学生分组计算前面判断过的比例式。通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
如果把比例写成分数形式,比例的基本性质又是怎样的呢?(指着80:2=200:5)教师边问边改写成: =
这个比例的外项是哪两个数呢?内项呢?
因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
(2)P34做一做。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80:( ) 2:7=( ):5 1.2:2.5=( ):4
3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1) 6:9和 9:12 (2)1.4:2 和 7:10 (3) 0.5:0 .2和 :
4、下面的四个数可以组成比例吗?把组成的比例写出来。
2 、3 、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化
P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)如果3a=5b,那么5:a=3:b。
(2) : 和 : 中,能与 : 组成比例的是 : 。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。
教学目的:
1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
教学重点:比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
《比的意义》教案 篇八
教学目标
(一)使学生理解。
(二)使学生知道分数各部分的名称和含义,知道一个分数的单位。
(三)培养学生抽象概括能力。
教学重点和难点
(一)、分数单位的意义。
(二)单位“1”的理解。
教学用具
投影片,教学图片。
教学过程设计
(一)复习准备
1.口答下面各题:(2~4题用投影片)
(1)把一块月饼平均分给两位小朋友,每位小朋友得到这块月饼的多少?
(2)用分数表示下面各图中阴影部分。
(3)哪个分数表示图中“( )”部分?
2.教师:观察上面(1)~(3)题的答案,都不是整数。人们在进行测量和计算的时候,往往得不到整数结果,这时就需要同一种新的数,即分数来表示。以前我们已经初步认识了分数,今天继续研究分数。板书课题:。
(二)学习新课
1.。
(1)依次出示教材84页第一组图中的三幅图。
①把糕点图贴在黑板上,用彩条把它平均分成两份。
教师:请观察这幅图,是什么意思?
说一说把谁拿来分?怎样分?分几份?每份是多少?
②把正方形图纸贴在黑板上。
教师:请说一说这幅图是什么意思?
(学生口答后补充板书)
引导学生说出:把正方形纸平均分4份,空白部分占1份,阴影部
③贴出线段图。
教师:我们把上面各题中平均分的一块糕点,一张正方形纸,一米长的线段,都叫做单位“1”。
(2)投影出图。教师:有4个苹果,把它平均分4份,图上如何表示?(学生在投影图上用虚线表示。)
教师:①图上表示把谁平均分?谁是单位“1”?②1个苹果是这堆苹果的多少?③3个苹果是这堆苹果的多少?(投影出题,学生讨论。)
(因为苹果的总数是单位“1”,把它平均分4份,1个苹果是1份,是
投影出图。
教师:有6只熊猫玩具,要平均分,可以怎样分?谁做单位“1”?每份是多少?几份是多少?
学生小组讨论,然后汇报。教师根据学生口答,板书出:
教师:从上面这两个例子可以看出,单位“1”不仅可以是一个物体,一个计量单位,也可以是若干物体组成的一个整体,如一堆苹果,一批货物,一个班的同学等等。总之,把谁平均分,谁就是单位“1”。
教师:单位“1”与自然数1有没有区别?
学生讨论后老师小结:自然数1是一个数,它只表示某一个具体事物,如一本书,一位同学,一支笔,一道数学题等,它是自然数的计数单位。而单位“1”不仅可以表示某一个具体的事物,还可以表示一堆,一群,一批等事物,它表示谁平均分的整体。
(3)教师:请同学们看看板书的这些分数,谁能说一说究竟什么叫分数?
学生讨论概括后老师板书:(或贴小黑板条)
把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。
(4)口答练习:(投影片)
什么?各以什么为单位“1”?
位“1”?
2.认识分子,分母和分数单位。
(1)请学生在板书的分数中任意选一个分数,指出它的分子、分母,并说明它们各表示什么?
(2)教师板书分数,请学生说一说分子、分母,及各表示什么?学生口答后教师板书:
教师:表示其中1份的数?
小黑板条:分数单位。)
练习:请说出下列分数的。分数单位,并说出它含有几个分数单位。
(三)巩固教案反馈
1.课本86页做一做1,2,请两位同学填投影片,其余同学填在书上。集体订正。
2.课本86页做一做(下)1,2,请两位同学填投影片,其余同学填在书上。集体订正。
3.口答填空:(投影片)
4.教师分别取出2根,4根,10根粉笔,请同学分别说出它们的
教师汇总:单位“1”的数量不同,平均分成同样多的份数后,其中每份数的多少就不相同。
(四)课堂总结与课后
1.,分数单位的意义。
2.分子、分母各表示什么。
3.作业:课本87页练习十八,1,2,3,4,5。
课堂教学设计说明
本节内容是在学生已经对分数有了初步认识,会读会写简单分数的基础上进行的。分数意义的学习,充分利用直观图形和学生的活动来突破“平均分”这个关键。第一组中三幅图的设问,引导学生逐层深入地认识一个单位的几分之一和几分之几,同时也为概括作了铺垫。在认识多个物体组成的整体时,要求学生按自己的设想去分,这样给学生留有更多的思维活动空间,便于调动他们的学习热情。在学生已掌握了平均分谁,谁就是单位“1”的基础上,安排学生讨论单位“1”和自然数1的区别,这样既加深了对单位“1”的认识,也为学生概括分数意义作铺垫。学生准确地把握了后,认识分子,分母及分数单位,即水到渠成,练习中安排了较多形式的题目,进行巩固和加深。
新课内容分为两部分。
第一部分学习。分为四层:认识单位“1”是一个事物、一个计量单位的分数;认识单位“ 1”是一个整体的分数;概括分数意义;巩固概念。
第二部分认识分子、分母和分数单位。分两层。了解分子,分母的含义;认识分数的单位。
比的意义教案 篇九
教学目标:
1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、培养学生概括、归纳的能力。
教学重点:会根据题意列方程。
教学难点:理解方程的含义。
教学过程:
一、教学例1
出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?
学生在本子上写。
指名回答,板书:50+50=100
含有等号的式子叫等式,它表示等号两边的结果是相等的。
二、教学例2
学生自学
要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。
2、小组同学交流四道算式,最后达成统一认识:
X+50>100 X+50=100
X+50<100 X+X=100
根据学生的回答,教师板书这4道算式。
3、把这4道算式分成两类,可以怎样分,先独立思考后再小组
内交流,要说出理由。
学生可能会这样分:
第一种:
X+50>100 X+50=100
X+50<100 X+X=100
第二种:
X+50>100 X+X=100
X+50<100
X+50=100
引导学生理解第一种分法:
你为什么这样分,说说你的想法。
小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。
指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的。等式 m.xiaozongshi.com 是方程。
提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”
那X+50>100 、X+50<100为什么不是方程呢?
提问:那等式和方程有什么关系呢,在小组里交流。
方程一定是等式,但等式不一定是方程。
三、完成“试一试”、“练一练”
学生独立完成。
集体订正时围绕“含有未知数的等式”进一步理解方程的含义
四、课堂作业:练习一的1、2、3。
板书: 方程的初步认识
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式是方程。
聪明在于勤奋,天才在于积累。上面的9篇小学数学《比的意义》教案是由快回答精心整理的比的意义教案范文范本,感谢您的阅读与参考。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。