1. 主页 > 知识大全 >

二次函数教案【最新5篇】(二次函数图像教案)

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能使我们及时找出错误并改正,快快来写一份总结吧。那么如何把总结写出新花样呢?这里给大家分享一些关于数学二次函数解题技巧,方便大家学习。以下这5篇二次函数教案是来自于快回答的二次函数的范文范本,欢迎参考阅读。

次函数教案 篇一

二次函数的图象与性质

1.画出函数=2x2-3x的图象,说明这个函数具有哪些性质。

2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)=3x2+2x;

(2)=-x2-2x

( 3)=-2x2+8x-8 (4)=12x2-4x+3

板书设计

1、画函数=ax2+bx+c(a≠0)的图象。

(列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。)

2、二次函数=ax2+bx+c(a≠0),

当a>0时,开口向上,当a<0时,开口向下。

对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a)

(最值与抛物线的开口方向及顶点的纵坐标有关。)

课后反思

在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数 是由 如何平移得来,并熟练掌握二次函数 图象的开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。

次函数教案 篇二

教学目标:

1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质

教学难点:建立二次函数表达式与图象之间的联系

教学方法:自主探索,数形结合

教学建议:

利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

教学过程:

一 、认知准备:

1.正比例函数、一次函数、反比例函数的图象分别是什么?

2.画函数图象的方法和步骤是什么?(学生口答)

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二 、 新授:

(一)动手实践:作二次函数 y=x2和y=-x2的图象

(同桌二人,南边作二次函数 y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)

(二)对照黑板图象 议一议:(先由学生独立思考,再小组交流)

1.你能描述该图象的形状吗?

2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

3. 当x0时,随着x的增大,y如何变化?当x0时呢?

4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三) 学生交流:

1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)

2.二次函数 y=x2 和y=-x2的图象有哪些相同点和不同点?

3.教师出示同一直角坐标系中的 两个函数y=x2 和y=-x2 图象,根据图象回答:

(1)二次函数 y=x2和y=-x2 的图象关于哪条直线对称?

(2)两个图象关于哪个点对称?

(3)由 y=x2 的图象如何得到 y=-x2 的图象?

(四) 动手做一做:

1.作出函数y=2 x2 和 y= -2 x2的图象

(同桌二人,南边作二次函数 y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)

2.对照黑板图象,数形结合,研讨性质:

(1)你能说出二次函数y=2 x2具有哪些性质吗?

(2)你能说出二次函数 y= -2 x2具有哪些性质吗?

(3)你能发现二次函数y=a x2的图象有什么性质吗?

(学生分小组活动,交流各自的发现)

3.师生归纳总结二次函数y=a x2的图象及性质:

(1)二次函数y=a x2的图象是一条抛物线

(2)性质

a:开口方向:a0,抛物线开口向上,a〈 0,抛物线开口向下[

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a0时,在对称轴的左侧(X0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

4.应用:(1)说出二次函数y=1/3 x2 和 y= -5 x2 有哪些性质

(2)说出二次函数y=4 x2 和 y= -1/4 x2有哪些相同点和不同点?

三、小结:

通过本节课学习,你有哪些收获?(学生小结)

1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线

2.知道二次函数y=a x2的性质:

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a0时,在对称轴的左侧(X0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

次函数教案 篇三

一。 教材分析

1、教材的地位及作用

函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

2.教学目标

(1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。[知识与技能目标]

(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。[过程与方法目标]

(3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]

3、教学的重、难点

重点:二次函数的概念和解析式

难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力

4、 学情分析

①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。

③初三学生程度参差不齐,两极分化已形成。

二、教法学法分析

1` 教法(关键词:情境、探究、分层)

基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

2、学法(关键词:类比、自主、合作)

根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。

3、教学手段

采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习 兴趣,参与热情,增大教学容量,提高教学效率。

三、教学过程

完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:

(一).创设情境 温故引新

以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:

(1)你们喜欢打篮球吗?

(2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?

从而引出课题〈〈二次函数〉〉,导入新课

(二).合作学习,探索新知

为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。

学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数

(三)当堂训练 巩固提高

由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。

(四).小结归纳 拓展转化

让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。

(五)布置作业 学以致用

作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系。

四。评价分析

本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

五。教学反思

1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。

2.本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。

次函数教案 篇四

教学目标:

1、经历描点法画函数图像的过程;

2、学会观察、归纳、概括函数图像的特征;

3、掌握 型二次函数图像的特征;

4、经历从特殊到一般的认识过程,学会合情推理。

教学重点:

型二次函数图像的描绘和图像特征的归纳

教学难点:

选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。

教学设计:

一、回顾知识

前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。)

引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 入手。因此本节课要讨论二次函数 ( )的图像。

板书课题:二次函数 ( )图像

二、探索图像

1、 用描点法画出二次函数 和 图像

(1) 列表

引导学生观察上表,思考一下问题:

①无论x取何值,对于 来说,y的值有什么特征?对于 来说,又有什么特征?

②当x取 等互为相反数时,对应的y的值有什么特征?

(2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).

(3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到 和 的图像。

2、 练习:在同一直角坐标系中画出二次函数 和 的图像。

学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)

3、二次函数 ( )的图像

由上面的四个函数图像概括出:

(1) 二次函数的 图像形如物体抛射时所经过的路线,我们把它叫做抛物线,

(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。

(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。

(4) 当 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。

(最好是用几何画板演示,让学生加深理解与记忆)

三、课堂练习

观察二次函数 和 的图像

(1) 填空:

抛物线

顶点坐标

对称轴

位 置

开口方向

(2)在同一坐标系内,抛物线 和抛物线 的位置有什么关系?如果在同一个坐标系内画二次函数 和 的图像怎样画更简便?

(抛物线 与抛物线 关于x轴对称,只要画出 与 中的一条抛物线,另一条可利用关于x轴对称来画)

四、例题讲解

例题:已知二次函数 ( )的图像经过点(-2,-3)。

(1) 求a 的值,并写出这个二次函数的解析式。

(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。

练习:(1)课本第31页课内练习第2题。

(2) 已知抛物线y=ax2经过点a(-2,-8)。

(1)求此抛物线的函数解析式;

(2)判断点b(-1,- 4)是否在此抛物线上。

次函数教案 篇五

目标:

1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。

2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。

重点难点:

重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。

难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。

教学过程:

一、创设问题情境

如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2 (a<0) (1)

因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。

因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2

因此,所求函数关系式是y=-0.2x2。

请同学们根据这个函数关系式,画出模板的轮廓线。

二、引申拓展

问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?

让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。

问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?

分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。

二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。

解:设所求的二次函数关系式为y=ax2+bx+c。

因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,

所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。

由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解这个方程组,得a=-15b=45 所以,所求的二次函数的关系式为y=-15x2+45x。

问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?

问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?

(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)

请同学们阅渎P18例7。

三、课堂练习:P18练习1.(1)、(3)2。

四、综合运用

例1.如图所示,求二次函数的关系式。

分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。

解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。

设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到64a+8b=-44a-2b=-4 解这个方程组,得a=-14b=32

所以,所求二次函数的关系式是y=-14x2+32x+4

练习: 一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

五、小结:

二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。

六、作业

1.P19习题 26.2 4.(1)、(3)、5。

2.选用课时作业优化设计,

读书破万卷,下笔如有神。快回答为大家整理的5篇二次函数教案到这里就结束了,希望可以帮助您更好的写作二次函数。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。