作为一名人民教师,时常需要用到教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是快回答给大家分享的7篇四年级数学教案,希望能够让您对于四年级数学教案的写作有一定的思路。
四年级数学教案 篇一
教学目标
1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
教学过程
一、 创设情境,激趣引入
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
[评析:通过介绍哥德巴赫猜想的有关史料,很自然地把学生的注意力集中到素数的概念上,激发了学生进一步探索和发现的欲望。同时,学生能从中感受到数学的奇妙与魅力,产生对数学的兴趣。]
二、 设疑引探,自主建构
1. 操作感受。
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
[评析:数学教学不仅要注重数学知识和技能的传授,更要让学生经历知识的形成过程。实验环节的设计,能引导学生在操作活动中自主发现自然数因数个数的特点,初步感知素数和合数的概念。]
2. 分类建构。
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
[评析:让学生写出1~20各数的所有因数,并根据每个数因数的个数进行分类,为学生的自主探索留出了足够的时间和空间,提高了学生的参与度,突出了学生的主体地位。接着通过对三个问题的讨论,引导学生深入思考,发现素数和合数的特点。自学课本,既及时准确地揭示了素数和合数的概念,又为学生进一步清晰和修正已经形成的概念提供了机会。]
3. 交流质疑。
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
学生可能提出:素数有多少个?最小的素数是几?最小的合数是几?有最大的素数或合数吗?
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
三、 巩固练习,深化认识
1. 试一试。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
2. 做想想做做第2题。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
3. 做想想做做第3题。
学生独立完成判断,并说明理由。
四、 全课总结
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
五、 举例检验
谈话:我们已经认识了素数,再回过头看一看哥德巴赫猜想(出示哥德巴赫猜想),你认为这个猜想正确吗?你能举几个例子检验一下吗?
学生举例检验。
谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!
[评析:利用所学知识解释和检验哥德巴赫猜想,既巩固了本节课学习的内容,又进一步激发了学生的探索愿望。]
[总评]
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
四年级数学教案 篇二
教学目标:
1、通过具体的生活情景,结合进行实际操作,了解小数乘法的意义。
2、结合小数乘法的意义,能够计算简单的小数乘整数。
教学重点:了解小数乘法的意义。
教学难点:能计算出简单的小数与整数相乘的得数。
教学方法:引导、发现法
教学准备:小黑板
教学过程:
一、情景导入呈现目标
1、回顾整数乘法的意义:(求几个相同加数相加的和的简便运算。)
2、3×4的表示什么意思?
0.2×4表示什么意思?组内交流,全班交流。
3、创设情境,提出问题。创设商店一角的情境,引导学生提出数学问题。然后对“买4根棒棒糖需要多少钱?”展开讨论。
二、探究新知
1、学生列出算式,并说明意义。
2、小组讨论算法。
3、汇报:鼓励学生用自己的语言解释理由并进行交流。可以运用连加,元、角、分的转化,几何模型得出结果。
4、引导全班同学讨论这些方法,进一步体会小数乘法的意义。引导学生观察小数乘法的意义和整数乘法的意义一样,也是求几个相同加数的和的简便运算。(参与指导解释疑难问题)
三、点拨升华
小数乘法的意义和整数乘法的意义一样,也是求几个相同加数的和的简便运算。独立思索小组交流总结方法教师点拨。
四、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。
五、当堂训练
1、算一算。
0.4×5=0.2×5=0.6×5=
0.3×6=0.2×7=0.6×9=
2、完成学案第三题。先独立做,最后组内交流。
六、拓展提高
笑笑看见远处的闪电以后,经过6秒才听见雷声,如果雷声在空气中的传播速度是每秒0.34秒,那么笑笑离闪电有多远?先独立做,最后组内交流。
七、作业布置:教材第34页“练一练”的第2、3题
板书设计:略
四年级数学教案 篇三
教学目标:
1、让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。
2、使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。
3、使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减法计算能力的自觉性。
教学重点:
1、小数加、减法的笔算方法以及小数加减混合运算。
2、能根据数据特点正确应用加法的运算定律进行小数的简便计算。
教学难点:
1、理解小数点对齐,即数位对齐的道理。
2、灵活选用方法使混合运算简便。
3、感受解题策略的多样化和灵活性。
教学建议:
1、鼓励学生自主学习小数加减法知识。
小数加减法和整数加减法,两者之间有着割不断的联系和相同之处。整数加减法的计算方法,学生在三年级时就已经掌握了。因此,让学生充分应用旧知来自主学习小数的加减法成为本单元教学的一个重要策略。教学时,教师的职责是:帮助学生激活整数加减法的计算方法这一已有知识经验,并尝试用它来计算小数加减法;让学生明确列竖式时应如何对齐数位,懂得道理何在;学会用自己的语言表述自主尝试的过程和结果。通过自主学习本单元的知识,使学生懂得应用旧知来学习新知是获取知识的一条重要途径。
2、提倡解题策略的多样化。
为了使因材施教、让每一个人都得到充分发展的理念落到实处,教学时应注意关注不同学生解答问题的不同思路,积极鼓励学生用自己的方式思考问题,提出自己的解法。如,教学例1中解答“第二轮动作完成后中国队领先多少分?”的问题时,教师不宜作任何提示,而应让学生根据自身经验找到适当的解题方法。又如,教学例3、例4时,不需要将教材中出现的各种解题思路率先呈现给学生,而是让学生在独立思考、自主解答的基础上,通过合作交流,领会多种不同的解题思路,感受解题策略的多样性和灵活性,达到提高数学思考能力和计算能力的目的。
四年级数学教案 篇四
第一课时
一、情境引入:
师生谈话引出生活中的乘法话题。
二、展示目标
1.经历学习三位数乘两位数乘法计算的过程。
2.掌握三位数乘两位数的笔算方法,能用竖式计算三位数乘两位数的乘法。
三、自学与交流研讨
1.出示例1。
让学生说一说怎样列式,并说说为什么这样列。
2.学生自己试着用竖式计算,指一人板演。算完后用计算器验算结果是否正确。
3.完成后说说是怎样算的。
同桌说说后,在全班说说。
4.用计算器验算结果是否正确。
四、质疑答疑
五、专项练习
用竖式计算下面各题。
368 × 19= 292× 46= 109 × 37=
六、课堂小结:这节课你有什么收获?
第二课时
1.在自主尝试计算、交流等活动中,经历学习乘数末尾有0的三位数乘两位数简便算法的过程。
2.计算乘数末尾有0的三位数乘两位数的乘法,会口算整百、整十数乘整十数。
3.在探索计算方法的过程中,感知数学知识的内在联系,培养知识迁移和自主学习的能力。
设计意图联系生活学数学,使学生渐渐关心身边的数学,善于用数学的眼光来审视客观世界中的丰富多彩的现象
一、情境的创设:
教师谈话,引出旅游团就餐问题。
二、展示目标
1.经历学习乘数末尾有0的三位数乘两位数简便算法的过程。
2.计算乘数末尾有0的三位数乘两位数的乘法,会口算整百、整十数乘整十数。
三、自学与交流研讨
1.观察情景图说说了解到的信息。
2.分别计算选择两种自助餐各需要多少元钱。
3.学生试着笔算乘数末尾有零的乘法。
找不同选择的同学各一人板演,其余的写在本上。
交流计算的方法。
重点交流乘数末尾的0的处理方法。
四、质疑答疑
五、专项练习:试一试。
先估计积是几位数再口算。
六、课堂小结:这节课你获得了哪些知识?
七、综合练习
采用书中的练习题。
第三课时
(1)结合具体事例,经历选择合适的估算方法进行估算的过程。
(2)能用合适的方法进行乘法估算,会解答有关乘法估算的实际问题。
(3)估算、计算的过程中,体会估算的实际意义,培养估算的习惯,培养数感。
设计意图教学是一门需要不断更新和反思的艺术,只有牢牢搭住时代发展的脉搏,与时具进,才能教给孩子更多的东西,这朵艺术之花才会永不凋谢。
一、情境的创设:
谈话引入(也可用其他形式引入)
二、展示目标
1.选择合适的估算方法进行估算的过程。
2.能用合适的方法进行乘法估算,会解答有关乘法估算的实际问题。
三、自学与交流研讨
1.让学生看图并说出图中的信息,再提出问题:估算这列火车大约有多少个座位。
2.展示:说说这列火车大约有多少个座位,你是怎样估算的。先小组内交流,再班级交流。
四、质疑答疑
五、专项练习
试一试
六、课堂小结
这节课你有什么收获?
七、综合训练
采用书中练一练的习题。
四年级数学教案 篇五
教学目标:
1、经历动手操作、观察比较、想象验证、合作交流等数学活动,探究发现圆的特征,形成圆的概念。
2、认识圆心和半径,并会用字母表示。
3、会正确使用圆规画圆。
4、在活动过程中,进一步培养合作意识、发展空间观念,体验几何图形的美,激发数学学习的热情。
教学重难点:
在观察和操作活动中发现圆的特征,形成圆的概念和画圆技能。
教学准备:
多媒体课件、电子白板、图钉、线、圆规、卡纸等。
教学过程:
一、溯源生活,激发兴趣
1、(PPT演示)雨水滴在湖面的圆形水波。
同学们,大自然奇妙无比,小小的水珠滴在湖面也会形成美妙的景色,请看。
问:你们发现,水珠滴在湖面上,湖面上出现了什么形状水波?
2、生活图片欣赏。
1)问:在这组图片中,你看到了什么形状的图形?
2)抽象出圆。(PPT)
3、学生举例:生活中,你还看到过那些物体的形状也是圆形的?
4、今天,我们就继续来学习有关圆的知识。
板书:圆的初步认识
【密切联系学生的生活实际,抓住学生已有的生活经验,通过教师的媒体演示让学生感受到生活中处处有圆,激发学习兴趣。】
二、操作体验,形成概念
(一)圆规画圆,初步感知圆的特征
1、初步感知:
1)看着屏幕上的“圆”,谁愿意用自己的话描述一下圆到底是怎样的一个图形?
2)师评价:大家说得都有点道理,那接下来我们就自己动手,来画一个圆,看一看,圆是不是具有刚才小朋友所说的特征?
2、圆规画圆
1)我们可以用什么画圆?
2)认识圆规(PPT)
3)师:好,知道了圆规的构造,我们开始画圆,看哪个小朋友画得最漂亮(要求,不许擦,画圆失败,只要找到失败的原因。)
3、反馈探讨画圆的方法
1)你是怎样画的?上台演示。
2)讨论:画圆失败的原因
3)讨论:画圆时应该注意什么?(生………………)
小结:确定一个点,确定一段长度。
板书:
点
长
4)再想一想,刚才我们在画圆时,针尖和笔尖落在纸上,各自确定了一个点,也就是两个点。然后在画的过程中,这两个点的“分工职责”有什么不同?
(一个点负责固定,一个点负责绕,旋转。也就是一个点是不动的,另一个是动的,我们暂时把着两个点叫作:“定点,动点”)
板书:定点
动点
5)师:那画圆时,这个“动点”是不是可以随便的动的?还是有一定的运动规则的?什么规则?
(动点移动到任何地方,和定点的距离保持不变。)
6)那你如何证明你用圆规画圆的时候,这个动点和定点的距离始终没有变化呢?
(圆规的两个脚分开后,只要没有外力去动这两个脚,针尖和笔尖之间的长度距离是不变的。如:我们人的两个脚在走路是。)
7)师演示圆规画圆。
师:看一看,老师如何画圆的。
小结:圆规画圆的方法
8)学生再次画圆
师:根据刚才老师的演示,大家能不能在用圆规画一个圆,看一看,是不是比刚才画得漂亮?
反馈讨论:这一次,你画得这么圆,画的时候注意了什么?
(二)操场画圆,丰富画圆方法
1、展示足球场上的圆。
师:我们现在能用圆规画一个漂亮的圆,那这个圆我们能画吗?
1)讨论:这个圆我们怎样画?说说你的想法。
2)课件演示:体育老师画圆。
3)教师演示(用“线钉”)
2、探究不同画圆法的内在联系
师:我们发现,在纸上画一般的圆,我们可以用圆规,如果在生活中画较大的圆,我们还可以用线、钉和木桩。它们画的工具不一样,但原理相同吗?
1)讨论:相同在什么地方?
钉子就是…… 线就是…… 小推车就是……
2)圆的构成确定
师:画了那么多圆,那你能告诉老师,哪一部分才是我们今天学习的圆?
(生上台指圆)
3)演示:(PPT)
揭示:到某一个定点的距离相等的无数个的点连起来组成的一条封闭的曲线,叫做圆。
(三)圆的特征揭示
1、设疑讨论:你认为黑板上的圆能不能画的更大些?谁决定了这个圆的大小?
(定点个动点的距离圆规两个脚之间的距离…………)
2、师演示验证谁决定了圆的大小。
3、揭示概念“半径”,用“r”表示
4、揭示概念“圆心”。(在画圆过程中的那个定点叫“圆心”,用“o”表示)
板书:半径
圆心
5、学生演示画“半径”
1)师:谁能上来画出这个圆的半径?
2)谁能用一句话说说什么是半径?(圆心到圆上一个点的距离)
找一找:下图中,圆的半径是()
6、问:在这个圆里,还能画一条半径吗?还能画几条?
(学生在自己的圆上画半径,看能画几条?)
得出:在一个圆里,能画无数条半径。
7、观察讨论:在同一个圆里,所有半径的长度有什么特点?(相等)
为什么?
教师小结:(从动点到定点方面研究考虑)
师:相信通过刚才的学习,同学门对圆已经有了更深的认识。其实,正是圆的这些特征,圆在我们的生活中广泛应用。
三、回归生活,解释应用
1、展示:车轮为什么是圆的?
1)学生讨论
2)媒体展示解释
2、人文素养的培养
1)理解:墨子的“圆,一中同长也”。
2)媒体演示。
3、圆的归类
1)出示篮球。问:这是圆吗?
2)讨论反馈
小结:球是立体的,圆是平面的,和以前学过的三角形,长方形,正方形都属于平面图形,而篮球是立体图形。
四、总结梳理
通过今天的学习,你对圆有了哪些新的认识?
相信通过刚才的学习,同学门对圆已经有了新的认识,在以后的生活中,你将会发现更多的有关圆在我们生活中的应用。
板书设计:
圆的初步认识
定点点圆心(o)位置
动点长半径(r)大小
北师大版四年级数学教案 篇六
教学目标:
1.掌握多位数的大小比较方法,能正确比较多位数的大小。
2.掌握整万数和整亿数改写成用“万”或“亿”作单位的方法,能正确地进行改写。
3.培养学生知识迁移的能力,渗透优化的数学思想。
教学重点:掌握多位数的大小比较方法和改写的方法。
教学难点:灵活运用知识解决数学问题。
教学准备:课件
教学过程:
一、谈话引入
1.课件出示下列两个数:
400000 4000000
(1)提问:你能读出这两个数吗?分别让学生读一读。
(2)解决问题:十万位上的“4”表示什么?百万位上的“4”又表示什么?
师:为什么同样的数字“4”,在不同的数位上所表示的大小是不一样的?
启发学生思考,并明确:不同数位上的数表示不同的意义。
(3)比一比,这两个数哪个大哪个小?指名回答。
2.在○里填上“>”“<”或“=”。
988○1000 765○489 566○581
反馈时让学生说说比较万以内数的大小的方法。
3.导入:刚才,我们对于万以内数的大小的比较方法进行了回顾,下面我们来看一看,这种方法对万以上的多位数是否也适用?这就是这节课要学习的内容。(板书课题)
二、交流共享
1.课件出示教材第20页例题5。
让学生观察表格,说一说,这三年出版社图书的种类各是多少?
指名读一读,得出信息。
2.独立思考,完成排序。
提问:这三年出版的图书数量各不相同,哪一年出版的种类多?哪一年出版的种类少?请同学们按从大到小的顺序排列。
学生独立思考后进行比较和排序。教师巡视,进行个别指导。
3.小组交流。
师:请同学们把自己比较的方法在小组内进行交流,看看小组内同学之间有没有不同的比较方法,谁的方法更加简便。
学生在小组内进行交流。教师巡视,参与个别小组交流,了解学生的交流情况。
4.组织全班交流汇报。
学生可能会有以下两种比较方法,如果没有,教师可以进行必要引导。
方法一:370000>300000>250000
提问:你是怎么想的?
引导学生得出:先看三个数的位数是否相同,三个数都是六位数;再比较位,位大的数就大。
追问:如果位相同,又该怎么比呢?
生答:就比较第二位,第二位大的数就大……
方法二:250000=25万,300000=30万,370000=37万,37>30>25,37万>30万>25万
5.数的改写。
(1)引导学生关注数的改写过程。
提问:第二种方法可行吗?在比较这三个数的大小时,要先做什么?(将三个数改写成用“万”作单位的数)
追问:什么样的数可以改写成用“万”作单位的数呢?
(2)教师引导学生观察两种比较方法,提问:两种比较的方法相同吗?哪一种方法更简便?
引导学生通过观察思考,领悟到:将这三个数先改写成用“万”作单位后再比较更简便。
(3)小组讨论:怎样将一个整万或整亿的数改写成用“万”或“亿”作单位?
组织交流汇报:把一个整万的数改写成用“万”作单位的数,只要把这个数末尾的4个0去掉,在后面加上一个“万”字;把一个整亿的数改写成用“亿”作单位的数,只要把这个数末尾的8个0去掉,在后面加上一个“亿”字。
(4)即时练习。
课件出示题目:你能先把这三年各类图书的总印数改写成用“亿”作单位的数,再把它们按从大到小的顺序排列吗?
6300000000=( )亿
7000000000=( )亿
7700000000=( )亿
( )亿>( )亿>( )亿
(5)小结:在日常生活中,为了方便,常常把整万或整亿的数改写成用“万”或“亿”作单位的数。
三、反馈完善
1.完成教材第21页“练一练”第1题。
先组织学生对这几个数进行分级,再读一读,最后再在教材上进行改写。
2.完成教材第21页“练一练”第2题。
先比较大小,再说说大小比较的方法。
3.完成教材第23页“练习四”第1~4题。
学生独立完成后,组织讲评、订正。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
四年级数学教案 篇七
教学目标:
1、认识容量单位毫升,知道毫升是一个比较小的容量单位。
2、掌握升和毫升之间的进率,知道1升=1000毫升
教学准备:
学生预习、准备量杯、滴管、量桶、水等。
教学过程:
一、了解预习情况:
通过预习,你知道我们这节课要学习什么?你知道了相关的哪些知识?
随学生回答板书:毫升
学生可能会知道:毫升可以用字母ml表示;1升=1000毫升;……
二、认识1毫升
1、取量筒,介绍:这个量筒最少的刻度是5毫升,现在我们要用它和这个滴管来找1毫升有多少滴,
2、用滴管向量筒里滴水,大家数一数,几滴大约是1毫升。
3、通过这个实验,你对毫升有了什么认识?
4、介绍生活中量毫升的容器:有时我们生病了,要喝一些药水,(取一药水瓶)读:成人每次喝15~20毫升。问:我没有量杯,那怎么才能找到这15~20毫升药水呢?
取生活中最常见的勺子,舀满1勺水,倒入量筒,测得大约是10毫升
指出:这勺子是我们每天都要用的东西,现在你会利用它找适量的药水了么?
三、完成想想做做1、2:
1、下面的容器里各有多少毫升药水?
指出:饮料我们可以多喝点少喝点,但在医学上却不能有一点点的马虎,所以在用药的时候都要严格按照规定。下面这些是常见的一些规格,分别说说是多少毫升?
2、老师用量筒量出一个50毫升,然后倒入一个常见的一次性透明的杯子里,让学生感受一下其高度,然后再让学生想象如果倒入题中的这几个容器中,水面高度各可能是什么情况?
回家练习:用刚才认识的勺子(10毫升),舀50毫升水,分别倒入这几个容器里,看看水面各在哪里?
四、升和毫升的进率
1.出示500毫升的量杯,请同学们观察量杯上的刻度,指一指,100毫升,150毫升,250毫升,400毫升和500毫升各在什么地方。
2.把1升水倒入量杯中,看看可以倒几杯。(两杯)
3.问:1升等于多少毫升。
4.指名学生回答,板书(1升=1000毫升)说明升与毫升的进率是1000。
5.练习:20xx毫升=( )升4000毫升=( )升
9升=()毫升10升=()毫升
五、完成想想做做3、4、5:
1、说说下面每种饮料分别需要多少瓶才正好是1升:
请学生完整的列出解答算式。在交流第一个的时候指名说说列式理由。
2、倒出100ml 饮料,数一数你要多少口才能把它喝完。再算一算,喝一口大约有多少毫升?
先交流:做这个实验应该怎么喝?然后多请几个学生自然地喝这100ml水。算一算。
3.完成想想做做4
(1)学生独立完成
(2)交流
六.你知道吗?
学生自由阅读后交流感想。
课后小记:“1毫升概念的确立”,让学生观察1毫升在量器、瓶盖中的情况、用滴管装,使每个学生都清楚地看到了1毫升的多少,学生感兴趣。认识一把普通勺子容量约10毫升,可以帮助学生更容易地在生活中寻找、认识毫升,是一个非常好的学具。
授后小记:
前两课时给我的最大感受就是,教学容量单位应该以动手操作及实物演示为主要的教学及学习方式,因此,在课前我利用学生群体收集了大量练习中出现的容器实物,在课上展示给所有学生看,学生通过观察,切实地感受到了“1毫升”是一个很小的容量单位及各种小容量容器的实际大小。
读书破万卷,下笔如有神。上面就是快回答给大家整理的7篇四年级数学教案,希望可以加深您对于写作四年级数学教案的相关认知。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。