1. 主页 > 知识大全 >

数学等差数列教案【优秀8篇】

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是快回答给大家整理的8篇数学等差数列教案,希望可以启发您对于等差数列的写作思路。

等差数列教案 篇一

教学目标

知识与技能目标:理解等差数列的定义;会根据等差数列的通项公式求某一项的值;会根据等差数列的前几项求数列的通项公式。

过程与方法目标:通过启发、讨论、引导、边教边练边反馈的方法提高学生思考问题、解决问题的能力。

情感、态度、价值观目标:培养学生的逻辑推理能力;培养学生在探索中学习知识的精神,增强学生相互合作交流的意识。

教学重点:会求等差数列的通项公式。

教学难点:等差数列的通项公式的推导。

教学准备:课件

教学过程:

一、创设情境,引入课题

如图1所示:一个堆放铅笔的V形架的最下面

一层放1支铅笔,往上每一层都比它下面一层多放1

支,这个V形架的铅笔从最下面一层往上面排起的

铅笔支数组成数列:1,2,3,4,……

②某个电影院设置了20排座位,这个电影院从第1排起各排的座位数组成数列:

38,40,42,44,46,……

③全国统一鞋号中,成年女鞋的各种尺码(表示以cm为单位的鞋底的长度)由大到小可排列为:25,24.5,24,23.5,23,22.5,22,21.5.

师生互动,探索新知

教师:请同学们仔细观察,你发现这三组数列有什么变化规律?

生:数列①从第2项起,每一项与它的前一项的差都等于 ;

数列②从第2项起,每一项与它的前一项的差都等于 ;

数列③从第2项起,每一项与它的前一项的差都等于 ;

[设计说明:采用边教学边反馈的方式,有利于教师及时了解学生理解新知识的程度,增强学生学好数学的信心]

教师引导学生观察上面的数列①、②、③的特点。

提出问题1:上面三个数列的共同特点是什么?

学生:从第2项起,每一项与它的前一项的差都等于同一个常数。

教师:这样我们就得到了等差数列的定义。

<一>等差数列的定义:如果一个数列从它的第2项起每一项与它的前一项的差都等于同一个常数,则这个数列叫做等差数列;这个常数叫做等差数列的公差,公差通常用字母d表示。等差数列的公差d的数学表达式为: 。

基础训练:1、上面数列①的公差d= ; 数列②的公差d= ;

数列③的公差d=

[设计说明:有利于学生扫除语言与符号转换的障碍]

2、下面的数列中,哪些是等差数列?若是,求出它的公差;若不是,则说明理由。

6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0.

提出问题2:任何一个数列一定是等差数列吗?如果是等差数列,公差一定是正数吗?

师生讨论得出结论:

、一个数列是等差数列必须具有这样的特点: 从第2项起,每一项与它的前一项的差都等于同一个常数;

(2)等差数列的公差d可能是正数、负数、零。

[设计说明:从具体数列入手,有利于较多基础差的学生理解等差数的定义,判断数列是否为等差数列转换成具体的步骤:求后面一项与前面一项的差,看这些差是否相等]

提出问题3:等差数列 的公差d的数学表达式为: ,

揭示了求公差d可以用哪些式子表示?

师生共同活动: 等,

变式:

提出问题4:如果等差数列 只知道首项 ,公差d,那么这个数列的其他项如何表示?

师生共同活动:

…,

[设计说明:问题3、问题4的提出训练学生的变形思想、递归思想,从而引出等差数列的通项公式及学生容易理解通项公式的变形公式]

<二>等差数列的通项公式:

高一数学等差数列教案 篇二

一、教学内容分析

本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析

教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标

通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

五、教学重点与难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

关键:

等差数列概念的理解及由此得到的“性质”的方法。

六、教学过程(略)

小学数学等差数列教案 篇三

2。2。1等差数列学案

1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。

2、等差中项:若三个数 组成等差数列,那么a叫做 与 的 ,

即 或 。

3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

4、等差数列的通项公式: 。

5、判断正误:

①1,2,3,4,5是等差数列; ( )

②1,1,2,3,4,5是等差数列; ( )

③数列6,4,2,0是公差为2的等差数列; ( )

④数列 是公差为 的等差数列; ( )

⑤数列 是等差数列; ( )

⑥若 ,则 成等差数列; ( )

⑦若 ,则数列 成等差数列; ( )

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )

⑨等差数列的公差是该数列中任何相邻两项的差。 ( )

6、思考:如何证明一个数列是等差数列。

例1、(1)求等差数列8,5,2,的第20项。

(2) 是不是等差数列 中的项?如果是,是第几项?

(3)已知数列 的公差 则

例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?

例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。

小学数学等差数列教案 篇四

【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

【教学重点】

等差数列的概念、等差数列的通项公式的推导过程及应用。

【教学难点】

等差数列通项公式的推导。

环节一:导入新课

教师ppt展示几道题目:

1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,25 2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。

在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。

教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。

环节二:探索新知

1.等差数列的概念

学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

问题1:等差数列的概念中,我们应该注意哪些细节呢?

环节三:课堂练习

抢答:下列数列是否为等差数列?

(1)1,2,4,6,8,10,12,……

(2)0,1,2,3,4,5,6,……

(3)3,3,3,3,3,3,3,……

(4)-8,-6,-4,-2,0,2,4,……

(5)3,0,-3,-6,-9,……

环节四:小结作业

小结:1.等差数列的概念及数学表达式。

关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

等差数列教案 篇五

《等差数列》教案设计

授课教师 授课班级 课 题 3.2.1等差数列(一) 课型 新授课 教学目标 知识目标 等差数列的定义。

等差数列的通项公式。 能力目标 明确等差数列的定义。

掌握等差数列的通项公式,并能运用其解决问题。 情感目标 培养学生的观察能力。

进一步提高学生的推理、归纳能力。

培养学生的应用意识。 教学重点 等差数列的定义的理解和掌握。

等差数列的通项公式的推导和应用。 教学难点 等差数列“等差”特点的理解、把握和应用。 教学过程 教学环节和教学内容 设计意图 【复习回顾】(2分钟)

数列的定义以及数列的通项公式和递推公式。

【引入】(3分钟)

某人要用彩灯装饰圣诞树,这个人做事喜欢按一定的规律去做,他在圣诞树的顶尖装上1个彩灯,在第一层装上4个,第二层装上7个,第三层装上10个,第四层装上13个。如果有第五层,你能猜得出他要装上多少个彩灯吗?他的规律是怎样的?

你能根据规律在( )内填上合适的数吗?

(1)1, 4, 7,10,13,( )

(2)21, 21.5, 22, ( ), 23, 23.5,…

(3)8,( ), 2, -1, -4, …

(4)-7, -11, -15, ( ), -23

共同特点:从第2项起,每一项与它的前一项的差等于同一个常数。这样的数列叫做等差数列。

【讲授新课】(16分钟)

一、等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。

用符号表示:

教师活动:分析定义,强调关键的地方,帮助学生理解和掌握。

问题:1.数列(1)(2)(3)(4)的公差分别是多少?

2.(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10

(6)5, 5, 5, 5, 5, 5 ……是等差数列吗?

3.求等差数列 1, 4, 7,10,13,16,…的第100项。

师生一起讨论回答。

二、等差数列的通项公式

如果等差数列 的首项是 ,公差是d,则据其定义可得:

即:

即:

即:

由此归纳等差数列的通项公式可得:

∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项

思考:已知等差数列的第m项 和公差d,这个等差数列的通项公式是?答:

【例题讲解】(8分钟)

数学等差数列教案 篇六

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的'思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

小学数学等差数列教案 篇七

1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一。课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1.等差数列的通项公式:

公差;

2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3.判断一个数列是否为等差数列只需看是否为常数即可;

4.利用从特殊到一般的思维去发现数学系规律或解决数学问题。

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

2020高中数学等差数列教案 篇八

一、教材内容分析

数列是中、高职数学知识的重要内容之一。我选择的课题:《等差数列》是“数列”中的一个重点内容,这部分内容在对口单招高考中的能级要求是理解。通过对生活实例和内容的分析,建立等差数列的模型,引导学生探索并掌握它们的基本性质,感受等差数列模型的广泛应用,并利用它解决实际问题。

二、教学对象分析

我校对口单招学生是在接受了九年制义务教育,经历了中考之后分流到我们学校的,他们的数学学习基础比较薄弱,学习习惯也有待进一步改善和提高,对数学的学习兴趣有待进一步加强,存在畏难情绪等。针对这些情况,我遵循学生的心理特点,关注学生的直觉感受和已有经验,结合生活实例,精选一些典型的、适合学生的生活情境,从实际应用的角度去讲解概念和定理,调动学生的学习积极性和主观能动性,提高教学效率 。

三、教学内容安排

本次参赛内容为一个单元:等差数列;在等差数列中又包括:1. 等差数列的概念(1课时);2. 等差数列的通项公式(1课时);3. 等差中项;4.等差数列的求和公式(1课时)。所选内容来源于教材和数学学案。

四、教学总目标

1.知识与技能

(1)理解等差数列的定义,理解等差数列的通项公式及前n项和公式;

(2)理解等差中项的广义概念,能灵活运用性质巧解相关问题;

2.过程与方法

通过实例,了解数列在实际生活和生产方面的应用,并能利用数列的有关知识解决实际问题。

3.情感、态度与价值观

通过建立数列模型以及应用数列模型解决实际问题的过程,培养学生分析、解决问题的能力,提高学生的基本数学素养,为后续的学习奠定良好的数学基础。

五、主要教学理念

1.任务引领

任务引领教学法以培养学生专业技能为宗旨,以学生为主体,以任务为中心,把学习过程任务化,让学生在实施任务中训练技能,构建理论知识,激发学习的兴趣,调动学习的积极性,发展创造能力及分析、解决问题的能力,并有充分的机会自行处理实施任务中出现的各种问题,做到“所学即所用”。

2.以生为本

学生是个体独立学习和小组协同学习的积极参与者,也是学习活动的评价者。以学生自主学习为主体,强调学生在学习过程中的自主选择和自我设计。教师以指导者的身份给予适当的建议,并适时进行指导,以发展性评价促进学生的学习与能力的发展。让学生自主探究、协作学习,再通过学生交流展示,教师点评的方式,从而使学生真正获得知识和提高能力。

3.小组合作

小组合作学习是指在课堂教学过程中,作为课堂活动主要参与者的学生,在老师的指导下组成学习小组,小组成员或小组之间相互启发、通力合作、共同提高的一种学习形式。小组合作学习是一种全新的教学理论与策略,是新课程改革所倡导的一种学习方式。这种形式有利于激发学生参与的热情,发挥学生的主动性,培养学生的合作意识与合作技能。

六、主要教学策略

1.做好课前预习沟通,让每位学生都能信心十足的上好数学课;

2.重视课前预习,使教学过程顺畅进行;

3.采用课堂教学结合梯度式任务单的形式完成教学;

4.利用现代化的教学手段,充分调动学生的积极性,活跃课堂气氛;

5.主要采用“任务引领”“自主探究”“小组合作”的教学方法;

6.采用教师评价、同学互评和自我评价相结合的激励性评价机制,促进学生积极进取。

七、资源开发

1.根据学生的认知规律对教材内容进行适当的调整;

2.利用现代教学手段制作教学课件和动画辅助教学。

教案目录

课题 教案 课时数 页码 等差数列 等差数列的概念 1课时 5~8 等差数列的通项公式 1课时 9~11 等差中项 1课时 12~14 等差数列的求和公式 1课时 15~17

教案一

教学内容 单元一 等差数列 任务一 等差数列的概念 授课学时 1 教学目标 知识与技能 了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,会求一个给定等差数列的首项与公差。 过程与方法 经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。 情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察能力、分析问题的能力,积极思维,追求新知的创新意识。 教学重点与难点 等差数列的概念 教法、学法 情境教学法、讲练结合法、任务驱动法、自主探究法、小组合作学习法 教学手段 多媒体教学设备、常规教学手段 教学设想 本课教学,重点是等差数列的概念,在讲概念时,通过创设情境引导学生理解概念,进一步引导学生通过概念来判断一个数列是否是等差数列。整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教学中学生的主体作用。 教学准备 1.教师认真备课、制作课件、布置预习单。

2.学生认真阅读课本内容,划出关键词,完成预习单,记录不懂问题,做好上课准备。 课型 新授课 教学过程 教学环节 学习内容 学生

活动 教师

活动 设计

意图 课前

预习单 阅读书本P7-9内容,在等差数列定义中的关键词下面用彩笔画线 自主完成 抽查反馈 了解备学内容 课堂

探究单

创设情境

导入新课

(5分钟)

探究:鞋码,通常也称鞋号,各国都有自己的鞋码系统。下表是男鞋尺码对照表。请写出各个鞋码分别构成的数列。这4个数列有哪些共同特点?

美国

6.0

6.5

7.0

7.5

10.0

英国

5.5

6.0

6.5

7.0

7.5

中国

43

44

45

46

独立思考,并写出这三个数列

引导学生分析比较每个数列的特点

通过具体问题引出等比数列的定义

活动一

学习等差数列的概念

(15分钟) 任务1:等差数列的定义是怎样的?定义中有哪些关键词?公差用什么字母表示? 结合课本定义独立思考后回答

板书定义及注意点,用彩笔画出关键词 任务驱动,引导学生理解概念,让学生经历观察、猜测、抽象、概括、论证的思维过程 任务2:下列数列是否是等差数列?若是,写出其首项及公差。

(1)2,5,8,11,14;

(2)-2,-2,-2,-2,-2,;

(3)1,0,-1,0,1,0,-1,0,……。

任务3:下列数列是否是等差数列?请说明理由。

(1) ; (2) 。

独立思考后完成

巡视并记录存在的问题,然后给出指导

通过这两个具体的例子,让学生对等差数列的概念有一个更加深刻的认识

活动二

思考交流

(10分钟) 请写出两个等差数列,分别作出他们的图像,说说图像有什么共特征和不同之处。 学生先独立思考,然后小组交流各自的思考结果 请学生回答,并纠正回答过程中存在的问题

让学生继续感受数列的函数特征,并进一步理解数列作为函数的特殊性,将等差数列与一次函数作类比 课堂小结

(4分钟) 等差数列的定义,怎样求一个等差数列的首项和公差 归纳总结1.归纳总结;

2.引申到下一节课 巩固本堂课的内容,培养学生对于问题的概括能力、语言组织能力

课堂

检测单

(10分钟)

1.已知下列数列都是等差数列,填出所缺的项,并求其公差。

(1)7,3, , , ,…;

(2)5, , , ,25,…。

2.下列数列是否是等差数列?若是,写出其首项及公差。

(1)2,9,16,23,30;

(2)

(3)-1,-1,-1,-1,-1.

独立思考后完成,然后小组交流各自的完成情况

巡视并记录学生作业中存在的问题,答疑并校对答案 帮助学生巩固本节课所学内容 课后

巩固单

(1分钟) 【巩固单】“一点通”P10第2、3题;

【思考单】书本P9“问题解决”

【预习单】预习“等差数列的通项公式”一节,并完成预习单。 必做

选做

必做

学习评价

自我激励

同伴激励

教师激励

自我评价

观察点

优秀

良好

继续努力

知识的掌握情况

方法的掌握情况

数学日志:

同伴评价(小组成员)

观察点

优秀

良好

继续努力

计算能力

同伴语录:

教师总评:

板书设计

突出重点

SHAPE MERGEFORMAT 教学反思精益求精 本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会求等差数列的公差,培养了学生观察、分析的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程,也使本节课的三维目标真正落到实处。

这节课从生活中的数列模型,各国的鞋码问题引入,进而提出有待探索的问题,这有助于发挥学生学习的主动性。在探索的过程中,学生通过分析、观察,逐步抽象概括得出等差数列定义,强化了由具体到抽象,由特殊到一般的思维过程。

这课各环节的设计环环相扣、简洁明了、重点突出,引导分析细致、到位、适度。如:判断某数列是否成等差数列,这是促进概念理解的好素材,学生在经历过程中,加深了对概念的理解和巩固。

这节课教学通过任务驱动,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。教学手段和教学方法的选择合理有效,体现了新课程所倡导的“培养学生积极主动,勇于探索的学习方式”。

通过一堂课的教学效果对本次教学设计做了以下几点反思:

1.数学知识的特点之一就是具有抽象性,在以后的教学中我应该注重将抽象具体化,帮助学生认识并实践。本次设计正是以学生身边的具体例子入手,将内容生活化从而激起学生兴趣。

2.所有的学习都是为了应用。数学也不例外。运用学习的知识去解决生活中的实际问题,这是时代对我们的要求也是学习最终的目的。数列作为高中数学中的重要内容之一由于具有丰富的实际应用背景应该好好抓住机会让学生体会到数列的重要性。

3.针对我校学生的基础差问题,只讲基础题型,难题少做或不做,反复练习。让他们体会会做题的成功心情并激发他们的学习欲望。

教案二

教学内容 单元一 等差数列 任务二 等差数列的通项公式 授课学时 1 教学目标 知识与技能 熟悉和理解等差数列的通项公式及推导过程,并能运用通项公式求解相关参数。 过程与方法 通过等差数列通项公式的运用,渗透方程思想;发挥学生的主体作用,讲练结合,做好探究性学习;理论联系实际,激发学生的学习积极性。 情感态度与价值观 通过对等差数列的研究,使学生明确等差数列与一般数列的的内在联系,从而渗透特殊与一般的辩证唯物主义观点 教学重点与难点 教学重点:等差数列通项公式的理解和应用 教学难点:灵活运用等差数列通项公式解决相关问题 教法、学法 情境教学法、讲练结合法、任务驱动法、自主探究法、小组合作学习法 教学手段 多媒体教学设备、常规教学手段 教学设想 本课教学,重点是等差数列的通项公式的推导及应用,由等差数列的递推公式引导学生通过观察分析式子特点、学生自主思考、合作探究、教师适时点拨等方式归纳得出等差数列的通项公式。真正体现课堂教学中学生的主体作用。 教学准备 1.教师认真备课、制作课件、布置预习单。

2.学生认真阅读课本内容,划出关键词,完成预习单,记录不懂问题,做好上课准备。 课型 新授课 教学过程 教学环节 学习内容 学生

活动 教师

活动 设计

意图 课前

预习单 阅读书本P10-11内容,试着了解等差数列通项公式的推导过程和思路,在不明白的地方做上记号 自主完成 抽查反馈 了解备学内容 课堂

探究单

创设情境

导入新课

(5分钟)

张家界百龙观光电梯运行速度为3m/s。现在电梯从高154m处向上运行,高325m处为终点,每秒计数一次,写出电梯高度构成的数列。这个数列的第20项是多少?你能写出这个数列的通项公式吗?

学生独立思考并写出相应的数列

教师引导学生从数列中归纳出每一项与首项、公差之间的关系

为等差数列通项公式的推导做准备

活动一

等差数列通项公式的推导

(10分钟) 设等差数列 的公差是 ,则 ,

,……,依次类推,得到 ( )。当 时也成立。由此可得等差数列的通项公式为 ( )。 学生结合探究题独立思考完成

请学生回答,并板书等差数列的通项公式

引导学生了解等差数列通项公式的由来,培养学生的归纳猜想的能力

活动二

等差数列通项公式的运用

(15分钟) 任务1:已知等差数列 的首项是1,公差为3,求其第11项。

任务2:求等差数列-13,-9,-5,-1,…的第56项。 学生独立思考后完成

校对答案

帮助学生进一步熟悉和理解等差数列的通项公式 任务3:已知等差数列 中, ,求此数列的通项公式。 学生独立思考后完成,然后小组交流答案 请学生回答解答思路,引导学生用方程思想解决本题 巩固通项公式;复习方程组的解法 课堂小结

(4分钟) 知识层面总结:等差数列的通项公式

思想方法总结: 不完全归纳法;方程思想 归纳总结 1.归纳总结;

2.(www.kuaihuida.com)引申到下一节课 培养学生对于问题的概括能力、语言组织能力 课堂

检测单

(10分钟) 已知 为等差数列。

(1)若 ,求 ;

(2)若 ,求 ;

(3)若 ,求 和 。 独立思考后完成,完成后小组交流各自的完成情况 巡视并记录学生作业中存在的问题,给出答疑并校对答案 帮助学生巩固本节课所学内容 课后

巩固单

(1分钟) 【巩固单】书本P13“练习”

【思考单】书本P13“问题解决”

【预习单】预习“等差数列的前n项和公式”一节,并完成预习单。 必做

选做

必做

学习评价

自我激励

同伴激励

教师激励

自我评价

观察点

优秀

良好

继续努力

知识的掌握情况

方法的掌握情况

数学日志:

同伴评价(小组成员)

观察点

优秀

海纳百川,有容乃大。以上8篇数学等差数列教案就是快回答小编为您分享的等差数列的范文模板,感谢您的查阅。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。