在教学工作者开展教学活动前,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。快来参考教案是怎么写的吧!快回答分享了5篇五年级数学上册教案,希望对于您更好的写作五年级上册数学有一定的参考作用。
五年级数学上册教案 篇一
教学目标:
通过练习,使学生进一步了解混合运算的运算顺序,并体会到用综合算式解决问题的思考方法,培养学生运用知识灵活解决问题的`能力。
教学重点:了解混合运算的运算顺序,并体会到用综合算式解决问题的思考方法。
教学难点:培养学生运用知识灵活解决问题的能力。
教学过程:
一、基本训练
⒈揭示课题。
这节课我们继续来复习混合运算,完成练习十二上的练习。(板书课题)
⒉口算:
720÷90484÷2450÷5028+4213×4840÷21360×265-1756+8
⒊计算下面各题。指名说说混合运算的运算顺序是怎样的?
87-49+21(90+70)÷80100-5×1332×(47-17)
二、灵活运用
⒈完成练习十二第7题。
⑴出示题目:请同学们一线一组地算一算。
⑵比较:每组中的两题有什么相同点和不同点?每组中的两题有什么关系?
⑶小结:能过这组题的计算,我们可以认识到一个数边续除以两个数,与除以这两个数的积,结果相同。⑷组织同学们分组举例,并证实以上的结论。
⒉完成练习十二第8题
⑴请同学们独立完成,可以不计算,通过观察比较。
⑵集体订正,指名说说每题比较时的思考过程。
⒊完成练习十二第9题
同学们独立完成,发现问题及是纠正。四、全课小结:通过练习,你有那些收获?
十二、布置作业
五年级数学上册教案 篇二
教学目标:
1、通过练习,使学生能系统地总结出混合运算的运算顺序,以使学生形成良好的认知结构。
2、适时渗透法制、德育教育,让学生建立正确的法制哩念。教学重点:能系统地总结出混合运算的运算顺序。
教学难点:能运用所学知识解决问题。
教学过程:
一、基础练习
⒈揭示课题。
这节课我们将前几节课学习的混合计算进行练习,比一比谁练习得最好。(板书课题)
⒉口算
90÷3012×578×2270÷903×1557÷3200÷5027×396×12280÷40
4×1960÷15
二、整理混合运算顺序
⒈运算顺序。
⑴出示:280+120÷10280+120×10
请同学们算一算,说说这两题的运算顺序是怎样的。
⑵出示:30÷6×530-6+5
请同学们算一算,说说这两题的运算顺序是怎样的。
⑶出示:(120+150)÷9017×(78-29)请同学们算一算,说说这两题的运算顺序是怎样的。
⑷提问:刚刚计算的几道题可以分成几类?应该怎样计算?
⒉完成练习五第2题
⑴出示:480-180+6031+2×30240÷4×20480-(180+60)(31+2)×30240÷(4×20)请同学们分组分别进行计算。
⑵比一比。
提问:每组中两题有什么相同的`地方?不同的地方呢?
三、实际应用
⒈完成练习十一第5题。
①出示题目列表。提问:通过这张表,你知道了哪些信息?根据这些信息,要求的是什么问题。请同学们列综合算式来计算。
②指名请同学们说说解题思路,并相应地说综合算式为什么这么列式。
⒉完成练习十一第6题。
①出示第6题的3小题。提问:这3题有什么相同的地方,有什么不同的地方?
②同学们独立完成。
③分析、比较有什么相同的地方和不同的地方?
四、布置作业
完成练习十一第1、3、4题
五年级数学上册教案 篇三
学习目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣
学情分析重点、难点:
在现实情景中理解正负数及零的意义。
易混点、易错点:感受用正数和负数来表示一些相反意义的量
学生认知基础:生活中见到过负数。
时间分配学20讲10练10
教法学法
自主探索法,练习法,讲授法。
教学过程
一、自学例1
1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。
2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
3、上海和北京的气温一样吗?不一样在哪儿?
4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?
二、自学例2
1、了解海拔的意义。
2、思考从图上你知道了什么?
3、试着用今天所学的知识来表示这两个地方的海拔高度。
学生活动教师助学课后改进
第一课时
第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1
(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。
(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
(3)上海和北京的气温一样吗?不一样在哪儿?
(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)
第三板块:正数和负数的读、写方法。
根据课本要求,记住读写方法。
学生看温度计,选择合适的卡片表示各地气温。
第三板块:交流学习例2
交流:从图上你知道了什么?
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。
学生根据今天所学知识把这些数分类。
正数都大于0,负数都小于0。
先指名读一读,再用正数或负数表示图中数据。
先读一读,再说说这些海拔高度是高于海平面还是低于海平面。
一:教学例1
1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。
根据学生的预习,共同学习交流认识新知。
(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。
2.教学正数和负数的读、写方法。
“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。
3.指导完成“试一试”。
(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)
二:教学例2
1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2.出示例2中珠穆朗玛峰与吐鲁番盆地的`海拔高度图。
三:初步归纳正数和负数。
⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?
⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。
⑶提问:正数、负数和0比一比,它们的大小关系怎样?
四:练习
做“练一练”1,2题
2.做练习一第1题。
3.做练习一第2题。
4、练习一4、5、6题。
五:作业
练习一第3题。
交流认识新知。
正数和负数的读、写方法。
根据课本要求,记住读写方法。
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
正数、负数和0比一比,它们的大小关系怎样?
正数都大于0,负数都小于0。
五年级数学上册教案 篇四
教学目标:
1、结合具体实例,在观察、讨论、操作的活动中,经历判断图形平移和在方格纸上按要求将图形平移的过程。
2、能判断图形的平移,能在方格纸上将简单的图形按要求平移。
3、在探索平移的`过程中进一步发展空间观念。
教学重难点:
1、能在方格纸上按要求将图形平移。
2、进一步发展空间观念。
教学准备:
了解生活中的平移现象。
教学过程:
一、平移现象
1、让学生观察图片,说一说这些事物重有哪些平移。
2、提出兔博士的问题,学生交流生活中的平移现象。
二、判断平移
1、(1)题学生先观察数红的两组图,说一说有什么,发现了什么,然后判断哪些图形通过平移可以互相重合,重点说一说图形是怎样平移的。
2、(2)题安排两个环节。
1)先让学生弄清题的要求,然后在书中独立完成。
2)交流展示涂色后的图形,重点说一说自己是怎样判断的。
三、平移图形
1、让学生在书中岸(1)题的要求画出图形,重点交流画的方法。
2、鼓励学生自主完成(2)题,集体交流。
练一练
1、给学生充分的作图时间,师巡视辅导后进。
2、有余力学生独立完成
五年级数学上册教案 篇五
教学目标:
知识与技能:
(1)初步理解方程的意义,会判断一个式子是否是方程
(2)会按要求用方程表示出数量关系
过程与方法:
经历方程的认识过程,体验观察、比较的学习方法。
情感态度与价值观:
在学习活动中,激发学生的学习兴趣,培养学生动手动脑的能力,养成仔细认真的良好学习习惯。
教学重难点
教学重点:
理解方程的含义,会用方程表示简单的情境中的等量关系。
教学难点:
正确分析题目中的数量关系
教学工具
多媒体设备
教学过程
教学过程设计
1创设情景,揭示课题。
(一)出示实物天平。
师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)
(二)演示:出示三个质量分别20克、30克、50克砝码,(将未标有重量的一边朝向学生)
师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?
(演示)学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)
提出要求:你能用等式表示天平两边物体的质量关系吗?(学生在本子上写,指名回答。)
板书:方程的意义
2新知探究
(一)出示课本例题(见PPT课件)
说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。
(板书:含有等号的式子叫等式)
[设计意图]:让学生在天平平衡的`直观情境中体会等式,符合学生的认知特点。让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。
(二)引导分类,概括方程概念。
1、学生自学(见PPT课件)
要求:
(1)学生在书上独立填写,用式子表示天平两边的质量关系。
(2)小组同学交流八道算式,最后达成统一认识:
20+30=50 20+X=100 50+X=100 50+2X>100 80<2x 20="" 3x="150">100+50 100+2X>50×3 (根据学生的回答,教师板书这8道算式。)
(3)把这8道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。 A、想一想你分类的标准是什么? B、把自己分类的情况,写在纸上?
学生可能会这样分:
第一种:相等的分一类,不相等的分一类
( 20+30=50 20+X=100 50+X=100 3X=150) (50+2X>100 80<2x 20="">100+50 100+2X>50×3)
第二种:含有未知数的,不含未知数的
(20+X=100 50+X=100 50+2X>100 80<2x 3x="150" 2x="">50×3) ( 20+30=50 100+20>100+50)
2、比较辨析,概括概念
过渡:看来同学们都能按自己的标准对式子进行分类。引导学生理解第一种分法:你为什么这样分,说说你的想法。
A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+100=250、这样xxxx的等式方程)
B、你能说说什么叫方程吗?
C、学生发言,概括出:“像20+x=100,3×=180……这样,含有未知数的等式叫做方程”
师(板书)
师提问:你觉得这句话里哪两个词比较重要?
生:“含有未知数”“等式”
师:那X+100>100、X+50<100为什么不是方程呢?
生:因为它们不是等式,
师提问:那等式和方程有什么关系呢?生小组里交流。
方程一定是等式,但等式不一定是方程。
师:ⅹ=0,ⅹ=a,ⅹ=a2是方程吗?
生:是,因为它们既含有未知数,又是等式。
3、举例方程、理解概念你能例举出方程吗?谁能举的与刚才不一样吗?(用字母Y表示、有难度的方程)
生列举:ⅹ+5=18 6(ⅹ-2)=24 6(ⅹ-2)=24 5ⅹ=30 ⅹ÷4=6 ⅹ+ⅹ+ⅹ+ⅹ=35
(ⅹ+4)÷2=3 ⅹ+y=5等。
师:同学们现在知道方程和等式有什么关系?
生:方程一定是等式,但等式不一定是方程。
师:你能用自己的方式来表示等式和方程的关系吗?
生思考汇报。
3、巩固提升
1、“试一试”
(1)观察左边的天平图,说说图中的是数量关系,列(www.kuaihuida.com)出方程。
(2)观察右边的图,弄清题意,列出方程。
2、练一练
判断下面的说法是否正确
(1)方程都是等式,但等式不一定是方程。( √ )
(2)含有未知数的式子叫做方程。 ( × )
(3)方程的解和解方程是一回事。 ( × )
(4)X2不可能等于2X。 ( × )
(5)10=4X-8不是方程。 ( × )
(6)等式都是方程。 ( × )
3、练习一
1、像100+x=250这样的(含有未知数)的(等式)称为方程
2、讨论判断:下面的式子哪些是方程,哪些不是方程?
8x=0 6x+2 4+2>10
2y÷5=10 n-5m = 15 17-8 = 9
10<3m 6x +3 = 11+2x 4+3z =10
是方程的是:8x=0 2y÷5=10 n-5m = 15 6x +3 = 11+2x 4+3z =10
不是方程的是:6x+2 4+2>10 17-8 = 9 10<3m
4、练习二
1、关系:含有未知数的等式叫方程,那么方程和等式有什么关系?你能用自己的方式来表示等式和方程的关系吗?
2、用方程表示以下实际问题中的数量关系。
(1)小红家买来一袋大米共重50千克,吃了3x千克,还剩30千克。 (3x+30=50)
(2)赵华家距离学校240米,她从家到学校走了3x分钟,每分钟行60米。 (60 x 3x=240)
(3)小明今年x岁,爸爸40岁,它们俩相差28岁。 (28+x=40)
(4)小芳每天跑skm,她一星期跑了28km. (7s=28)
(5)一罐糖有a颗,平均分给25个小朋友,每人得3颗,正好分完。 (a÷25=3)
课后小结
本节课,我学到了什么是方程:含有未知数的等式叫做方程。我还学到了等式和方程的关系:方程一定是等式,但等式不一定是方程。
板书
方程的意义
等式的概念:含有等号的式子叫等式
方程的概念:“含有未知数的等式叫做方程”
判断一个式子是不是方程必须满足的条件:
(1)“含有未知数”
(2)“等式”
注意:
方程一定是等式,但等式不一定是方程。
他山之石,可以攻玉。快回答为大家整理的5篇五年级数学上册教案到这里就结束了,希望可以帮助您更好的写作五年级上册数学。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。