1. 主页 > 知识大全 >

等差数列教案(最新3篇)(等差数列前n项和教案)

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。以下是快回答给大家分享的3篇等差数列教案,希望能够让您对于等差数列教案的写作有一定的思路。

高中数学等差数列教案 篇一

“等差数列”教学设计

一、教学内容分析

等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

二、教学目标

1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

三、教学重难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

四、学习者分析

普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

五、教学策略选择与设计

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

六、教学资源与工具设计

(一)学习环境:多媒体教室

(二)用到的资源:

1 查找有关等差数列的实例

2 写出上课要提到的问题

3 制作相关PPT课件

七、教学过程

教学环境 教学内容与

教师活动 学生活动 设计意图或依据 情境导入

在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?

由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?

水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?

倾听和观察分析,发表各自的意见。

课堂引入,引向课题 探索与归纳

对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。

提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件?

由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b

的等差中项。

不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,

从而可得到在一等差数列中,若m+n=p+q则

高中数学等差数列教案 篇二

一。设计思想

数学是思维的体操,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。这正是新课程所倡导的数学理念。

本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

二。教材分析

高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

三。学情分析

学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。同时思维的严密性还有待加强。

四。教学目标

1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。

2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。

3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。

五。重点、难点

教学重点:等差数列的概念及通项公式的推导。

教学难点:对等差数列概念的理解及学会通项公式的推导及应用。

六。教学策略和手段

数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

教学手段:多媒体计算机和传统黑板相结合。通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。而保留使用黑板则能让学生更好的经历整个教学过程。

七。课前准备

学生预习,教师做好课件并安装好。

八。教学过程

创设情景,引入概念

设计意图:希望学生能通过日常生活中的实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程。

师生活动:

情景1:

师—把班上学生学号从小到大排成一列 :

学生:

师—这是数列吗?你能归纳出它的通项公式吗?

学生—是,

师—把上面的数列各项依次记为 ,填空:

学生—填空并归纳出一般规律: ,( )

师—上面这个规律还有其他形式吗?

学生—或者写成 ,( )

注:要对强调 ,原因在于 有意义。

师—你能用普通语言概括上面的规律吗?

学生—自由发言,选择最恰当的语言。

上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。

情景2:看幻灯片上的实例

(1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):

48,53,58,63

(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)

18,15.5,13,10.5,8,5.5

(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:

本利和=本金 (1+利率 存期)

时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)

各年末本利和(单位:元)

10072,10144,10216,10288,10360

师:上面的三个数列又分别有什么规律呢?

学生—(1) , ,

(2) , ,

(3) , ,

师—归纳上面数列的共同特征:

(d是常数), , ,

师 —满足这种特征的数列很多,我们有必要为这样的数列取一个名字?

学生(共同)—等差数列。

提出课题《等差数列》

师—给出文字叙述的定义(学生叙述,板书定义):

一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首项。

对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。

师—这样的数列在生活中的例子,谁能再举几个?

学生—某剧场前8排的座位数分别是

52,50,48,46,44,42,40,38.

学生—全国统一鞋号中成年女鞋的各种尺码分别是

21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25

抢答:观察下列数列是否为等差数列

1,2,4,6,8,10,12,……

0,1,2,3,4,5,6,……

3,3,3,3,3,3,3……

2,4,7,11,16,……

-8,-6,-4,0,2,4,……

3,0,-3,-6,-9,……

注:常数列也是等差数列,公差是0。

推进概念,发现性质

设计意图:概括等差中项的概念。总结等差中项公式,用于发现等差数列的性质。

师生活动:

师—想一想,一个等差数列最少有几项?它们之间有什么关系?

学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。

设三个数 成等差数列,则A叫a与b的等差中项。同时有A-a=b-A,

说明:(1)上面式子反过来也成立。

(2)等差数列中的任意连续三项都构成等差数列 ,反之亦成立。

(三)探究通项公式

设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。

师生活动:

师—对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。下面一起来研究等差数列的通项公式。

先写出上面引例中等差数列的通项公式。再推导一般等差数列的通项公式。

师—若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?

启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。

学生— 即:

即:

即:

由此可得:

师—从第几项开始归纳的?

学生—第二项,所以n≥2。

师—n=1时呢?

学生—当n=1时,等式也是成立,因而等差数列的通项公式

( )

师—很好!

高中数学等差数列教案 篇三

等差数列的教学设计

教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。

设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

一、教材分析:高考资源网

教学内容:

高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

教学地位:

本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网

教学重点:

理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。

教学难点:

对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。

二、学习者分析:

高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。

三、教学目标:高考资源网

知识目标:

理解等差数列定义,掌握等差数列的通项公式。

能力目标:高考资源网

培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

情感目标:

①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

四、教法和学法的分析:高考资源网

通过探究式教学方法充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。

2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。

五、教学媒体和教学技术的选用

多媒体计算机和几何画板

通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。

六、教学程序:

(一)设置问题,引导发现形成概念w。

师:看大屏幕。高考资源网

情景1(播放奥运会女子举重场面)

2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):

48,53,58,63

情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)

18,15.5,13,10.5,8,5.5

情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:

本利和=本金 (1+利率 存期)

时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)

各年末本利和(单位:元)高考资源网

10072,10144,10216,10288,10360

师:思考上述各组数据反映了什么样的信息?

每行数有何共同特点?请同学们互相讨论。

(学生纷纷议论,有的几个人在一起商量)高考资源网

(从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。)

从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。

48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗?

学生1:后一项与它的前一项的差等于常数。

师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗?

学生1:不一样,要加上同一个常数。

学生2:每一项与它的前一项的差等于同一个常数。

师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗?

学生2:不一样,必须从第二项开始。

学生3:从第二项起,每一项与它的前一项的差等于同一个常数。

(教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征:

= 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起)

师:能不能用数学语言表示?

学生4:

师:等价吗?

学生4:应加上(d是常数), .

(让学生充分讨论,注意文字语言与数学符号语言的转化的严谨性)

师:对式子进行变形可得 。

这样的数列在生活中的例子,谁能再举几个?

学生5:某剧场前8排的座位数分别是

52,50,48,46,44,42,40,38.

学生6:全国统一鞋号中成年女鞋的各种尺码分别是

21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25

学生7:马路边的路灯,相邻两盏之间的距离构成的数列。

师:如何用数列表示?

学生8:设相邻两盏之间的距离为a,该数列为

a,a,a,a,……,为常数列,即常数列都具有这种特征。

(让学生举例,加深感性认识)

师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字?

学生(共同):等差数列。

师:(学生叙述,板书定义)高考资源网

一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。

提出课题《等差数列》

对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。

师:回到表格中,分别说出它们的公差。

学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.

师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期)

求而按数列的特征求呢?

学生:若能求得通项公式,问题就很好解决。

(再提出问题,引导发现求通项公式的必要性)

(二)启发、引导推出等差数列的通项公式

师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网

启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。

学生10: 即:

即:

即:

由此可得:

师:从第几项开始归纳的?

学生10:第二项,所以n≥2。

师:n=1时呢?

熟读唐诗三百首,不会做诗也会吟。上面就是快回答给大家整理的3篇等差数列教案,希望可以加深您对于写作等差数列教案的相关认知。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。