1. 主页 > 知识大全 >

八年级数学下册教案11篇7-4-40

教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,教案应是与时俱进的。这里给大家分享一些关于人教版八年级下册数学优秀教案,方便大家学习。为了让您对于八年级数学下册教案的写作了解的更为全面,下面高考家长帮给大家分享了11篇八年级数学下册教案,希望可以给予您一定的参考与启发。

八年级数学下册教案 篇一

【教学目标】

一、知识目标

经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

二、能力目标

知道分时方程的意义,会解可化为一元一次方程的分式方程。

三、情感目标

在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

【教学重难点】

将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

【教学过程】

一、课前预习与导学

1.什么叫做分式方程?解分式方程的步骤有哪几步?

2.判断下面解方程的过程是否正确,若不正确,请加以改正。

解方程:=3-

解:两边同乘以(x-1),得

2=3-x=1,①

x=3+1-2,②

所以x=2.③

(不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)

3.解下列分式方程:(1)=(2)+=2.

二、新课

(一)情境创设:

1.甲、乙两人加工同一种服装,乙(www.kaoyantv.com)每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

设甲每天加工服装多少件,可得方程:

2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

设这个两位数的十位数字是x,可得方程:

3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

设自行车的速度为xkm/h,可得方程:

(二)探索活动:

1.上面所得到的方程有什么共同特点?

2.这些方程与整式方程有什么区别?

结论:分母中含有未知数的方程叫做分式方程。

3.如何解分式方程=?

解:这个分式方程的两边同乘各分式的最简公分母x(x+1),

可以得到一元一次方程:20(x+1)=24x

解这个方程,得

x=5

为了判断x=5是否是原方程的解,我们把x=5代入原方程:

左边==4,右边==4,左边=右边。

x=5是原方程的解。

说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

三、例题教学:

例1.解方程:-=0

板书出解分式方程的一般过程及完整的书写格式。

解:方程两边同乘x(x-2),得

3(x-2)-2x=0

解这个方程,得

x=6

把x=6代入原方程:左边=右边=0,左边=右边。

x=6是原方程的解。

四、课堂练习:

1.下列各式中,分式方程是()

A.B.C.D.

2.分式方程解的情况是()

A.有解,B.有解C.有解,D.无解

3.解下列方程:

4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

八年级数学下册教案 篇二

例题讲解

引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,

1、你有哪些乘车方案?

2、只租8辆车,能否一次把客人都运送走?

问题2;怎样租车

某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:

甲种客车乙种客车

载客量(单位:人/辆)4530

租金(单位:元/辆)400280

(1)共需租多少辆汽车?

(2)给出最节省费用的租车方案。

分析;

(1)要保证240名师生有车坐

(2)要使每辆汽车上至少要有1名教师

根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。

设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即

y=400x+280(6-x)

化简为:y=120x+1680

讨论:

根据问题中的条件,自变量x的取值应有几种可能?

为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。

在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

方案一:

4两甲种客车,2两乙种客车

y1=120×4+1680=2160

方案二:

5两甲种客车,1辆乙种客车

八年级数学下册教案 篇三

活动一、创设情境

引入:首先我们来看几道练习题(幻灯片)

(复习:平行线及三角形全等的知识)

下面我们一起来欣赏一组图片(幻灯片)

[学生活动]观看后答问题:你看到了哪些图形?

(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

[学生活动]小组合作交流,拼出图案的类型。

同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

活动二、合作交流,探求新知

问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

[学生活动]认真观察、讨论、思考、推理。

鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

小结平行四边形的性质:

平行四边形的对边相等

平行四边形的对角相等(这里要弄清对角、对边两个名词)

你能演示你的结论是如何得到的吗?(学生演示)

你能证明吗?(幻灯片出示证明题)

[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

自己完成性质2的证明。

活动三、运用新知

性质掌握了吗?一起来看一道题目:

尝试练习(幻灯片)例1

[学生活动]作尝试性解答。

八年级下册数学优秀教案 篇四

《正弦和余弦(二)》

一、素质教育目标

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。

(三)德育渗透点

培养学生独立思考、勇于创新的精神。

二、教学重点、难点

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

三、教学步骤

(一)明确目标

1.复习提问

(1)什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

2.导入新课

根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。”这是否是真命题呢?引出课题。

(二)整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

(三)重点、难点的学习和目标完成过程

1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。

2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱。因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。

3.教师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆。因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固。

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦。

(2)把sin(90°-A)写成∠A的余弦。

这一练习只能起到巩固定理的作用。为了运用定理,教材安排了例3。

学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。

教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处。同时,做例3也为下一节查正余弦表做了准备。

(四)小结与扩展

1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。

2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。

八年级数学下册教案 篇五

一、目标要求

1.理解掌握异分母分式加减法法则。

2.能正确熟练地进行异分母分式的加减运算。

二、重点难点

重点:异分母分式的加减法法则及其运用。

难点:正确确定最简公分母和灵活运用法则。

1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。

2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。

三、解题方法指导

【例1】计算:(1)++;

(2)-x-1;

(3)--。

分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。

解:(1)原式=-+=-+====;

(2)原式======;

(3)原式=--===。

【例2】计算:。+++。

分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。

解:原式=++=++=+=+==。

四、激活思维训练

▲知识点:异分母分式的加减

【例】计算:-+。

分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。

解:原式=[x+2-]-[x+3+]

+[+1]

=x+2--x-3-++1

=--+=====。

五、基础知识检测

1.填空题:

八年级数学下册教案 篇六

一、教学目标

1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程。

2.能够将一元二次方程化为一般形式并确定a,b,c的值。

二、(重)难点预见

重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程。 难点:能够将一元二次方程化为一般形式并确定a,b,c的值。

三、学法指导

结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务。

四、教学过程

开场白设计:

一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用。什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获。

1、忆一忆

在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?

学法指导:

本节课学习一元二次方程先让学生回忆一元一次方程。学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果。

2、想一想

请同学们根据题意,只列出方程,不进行解答:

(1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽。

(2)两个连续正整数的平方和是313,求这两个正整数。

(3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长。

预习困难预见:

(1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了。

(2)学生在解答第(3)题时,设未知数时忘记带单位。

(3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间。

改进措施:

教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑。

3、议一议

请同学们将上面的方程按照以下要求进行整理:

(1)使方程的右边为0(2)方程的左边按x的降幂排列。我们会得到:

① ② ③

你能发现上面三个方程有什么共同点?

_____________________叫做一元二次方程。在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?

学法指导

学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法。

4、试一试

下面方程是一元二次方程吗?为什么?

①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

方法提升:

由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程。

口诀生成:

判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现。

5、学一学

一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数。你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来。

八年级数学下册教案 篇七

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:

体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:

对于平均数、中位数、众数在不同情境中的应用。

教学方法:

归纳教学法。

教学过程:

一、知识回顾与思考

1、平均数、中位数、众数的概念及举例。

一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

三、课堂练习:复习题A组

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:复习题B组、C组(选做)

八年级数学下册教案 篇八

教学目标

(一)知识与技能目标

使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.

(二)过程与方法目标

通过分式的化简提高学生的运算能力.

(三)情感与价值目标.

渗透类比转化的数学思想方法.

教学重点和难点

1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.

2.难点:灵活运用分式的基本性质进行分式化简.

教学方法:分组讨论.

教学过程

(一)情境引入

1.数学小笑话:

从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

2.问:这个富家子弟为什么会犯这样的错误?

3.分数约分的方法及依据是什么?

(1)的依据是什么?呢?

(2)你认为分式与相等吗?与呢?

(二)新课

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:

=,=(其中M是不等于零的整式)

2.加深对分式基本性质的理解:

例1下列等式的右边是怎样从左边得到的?

由学生口述分析,并反问:为什么c≠0?

解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)

八年级数学下册教案 篇九

一、教学目标

1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程。

2.能够将一元二次方程化为一般形式并确定a,b,c的值。

二、(重)难点预见

重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程。 难点:能够将一元二次方程化为一般形式并确定a,b,c的值。

三、学法指导

结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务。

四、教学过程

开场白设计:

一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用。什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获。

1、忆一忆

在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?

学法指导:

本节课学习一元二次方程先让学生回忆一元一次方程。学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果。

2、想一想

请同学们根据题意,只列出方程,不进行解答:

(1)一个矩形的`长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽。

(2)两个连续正整数的平方和是313,求这两个正整数。

(3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长。

预习困难预见:

(1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了。

(2)学生在解答第(3)题时,设未知数时忘记带单位。

(3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间。

改进措施:

教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑。

3、议一议

请同学们将上面的方程按照以下要求进行整理:

(1)使方程的右边为0(2)方程的左边按x的降幂排列。我们会得到:

① ② ③

你能发现上面三个方程有什么共同点?

_____________________叫做一元二次方程。在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?

学法指导

学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法。

4、试一试

下面方程是一元二次方程吗?为什么?

①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

方法提升:

由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程。

口诀生成:

判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现。

5、学一学

一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数。你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来。

八年级数学下册教案 篇十

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999

(2)998×1002

导入新课:计算下列多项式的积。

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级数学下册教案 第十一篇

教学目标:

1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

2、能利用它们的性质和判定进行推理和计算。

3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

教学重点、难点:

重点:掌握特殊平行四边形性质与判定。

难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

教学过程:

一、梳理知识:

1.特殊平行四边形的性质。

1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm

则BC=_____cm,△BOC的周长=_____cm

2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,

则你能求出哪些线段的长度?

3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,

则AB=_____cm,△BOC的周长=_______cm.

小结:特殊平行四边形的性质(PPT呈现)

2.特殊平行四边形的判定。

要使平行四边形ABCD成为矩形,需要增加的条件________.

要使平行四边形ABCD成为菱形,需要增加的条件________.

要使矩形ABCD成为正方形,需要增加的条件________.

要使菱形ABCD成为正方形,需要增加的条件________.

小结:特殊平行四边形的判定(PPT呈现)

二、深化提高:

1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,

四边形ADCE是一个正方形?并给出证明.

2.如图,矩形ABCD的对角线AC、BD交于点O,

过点D作DP∥OC,过C点作CP∥DO,交DP于点P,

试判断四边形CODP的形状。

变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

3.如图,在中,是边的中点,分别是及其延长线上的点,.

(1)求证:.

(2)请连结,试判断四边形的形状,并说明理由.

(3)若四边形是菱形,判断的形状。

三、拓展提高

1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、

△BCE、△ACF,

(1)四边形ADEF是什么四边形?并说明理由

(2)当△ABC满足什么条件时,四边形ADEF是菱形?

(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.

2.如图,已知⊿ABC是等腰三角形,顶角∠BAC=,(<60°)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

(1)求证:BE=CD;

(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明,

四、课堂小结

五、作业

1.如图,在正方形ABCD中,P为对角线BD上一点,

PE⊥BC,垂足为E,PF⊥CD,垂足为F。

求证:EF=AP

2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,

EF⊥BD,交CD于点F,DE=2.5cm,求CF的长。

3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,

DH⊥AB于H,求:DH的长。

他山之石,可以攻玉。上面的11篇八年级数学下册教案是由高考家长帮精心整理的八年级数学下册教案范文范本,感谢您的阅读与参考。