1. 主页 > 知识大全 >

《解决问题策略》评课稿7篇7-5-89

作为一无名无私奉献的教育工作者,常常需要准备教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?读书破万卷,下笔如有神,以下是细致的小编sky给家人们收集的7篇解决问题的策略的相关内容。

《解决问题策略》评课稿 篇一

一、预习单的作用。

昨天印发了预习单发下去,今天收上来看了一下,学生对于一些基本的知识点还是掌握得可以的,就是在画图的细节上不太注意。譬如画出增加或减少的面积,最好是要打上阴影,这样可以在观察图形的时候可以观察得更加清楚一些。而在预习单中打上阴影的,全班就只有2个人。还有就是条件,也有很多同学不标上的,长和宽倒是很少有人会忘记,就是预习单中增加的面积和减少的。面积是不标上数字的。所以,今天上课,在交流预习单时,我拿了一份比较好的和另一份普遍性的作业,让学生进行观察比较,得出了画图时的一些注意点:标上条件,打上阴影。

另外,我选择的预习单的题量太大,交流预计是五分钟,结果花了七八分钟左右。其实不用这么大的题量,完全可以在预习单的第二第三题中选择一题。

二、这一课时的题量虽然比较少,但想想做做的两道题难度还是比较大的。例题的解决是十分顺利的。

先出示题目,我问:读完题目之后,你明白题目意思了吗?结果学生很得意地说:可以?我心中咯噔一下,因为我的本意是估计学生看不明白题目中的数量关系,从而启发他们想办法解决,那么办法就是画图的策略,因为例题光靠读题是很难找出其中隐含的关系,更何况回答可以的还不是一个两个,而是一大片。那么我只好再问一下:其中的关系是什么?还是有很多学生举手:请了一个,他十分自信地回答:我虽然暂时看不出来,不过我知道可以画一幅图。 原来,不用我再继续引导了,他们自己全明白。

因为有了预习单的对比和引导,所以这一幅图学生画得还是比较好的。阴影部分,条件交代得都是蛮完备的。交流自己的思路也交流得还可以,就是画图完成算式再交流,学生速度太慢。

三、让学生反思吧

在完成试一试后,我让学生回顾一下自己的解题过程,说一说自己成功的地方在哪儿,自己有何改进之处。虽然今天学生结结巴巴地说得也不是太好,但是我想,解题总归是要总结的,让他们反思,总比不思要好得多。而且这个能力也是一个人最基本的能力。

四、题目的难度。

想想做做的两道题目实在是太难了,说是培优题也一点不为过。虽然在课上我充分地让他们去做,两题我给了整整八分钟,交流的时间也十分充分。但是我总觉得学生掌握得不是太好。后来课后一检查学生的书本,发现大部分学生基本上已经明白,有七八个学生还是需要老师再讲解一遍。这种情况平时很少发生。哎,真不知道教材编这么难的题目干什么?在今天交流这两题的时候,我是请了会做的学生到前面来讲述自己的思路,我在下面也听着,觉得他们讲得还是蛮清楚的。所以自己也没有再重新复述,难道问题是出在这儿。可是,要是学生交流了自己的思路之后,老师再不厌其烦地复述再复述,那么,学生的交流不也就失去了自己的意义了吗?而且,确实也不利于培养学生认真倾听的习惯。真是两难呀!

解决问题的策略教案 篇二

教学目标:

1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:使学生理解并运用假设的策略解决问题。

教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

教学过程:

一、直接导入:

1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。

2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。

二、以鸡兔同笼为例,探究假设

1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。

分别板书:假设都是鸡 假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗? 现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。

师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)

表示假设全部是兔总共有32条腿。32-22=10(条)

表示实际多画了10条腿。4-2=2(条)

表示一只兔比一只鸡多2条腿。102=5(只)

表示鸡有5只。8-5=3(只)

表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。

教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。

2、刚才我们假设了全部是兔,如果假设全部是鸡,应该怎样想?先让学生小组内交流,然后有能力的学生独立完成,其他学生画图完成或看提示完成。在交流时分别对每步提问。问:82=16表示什么?(假设全部是鸡总共有16条腿)22-16=6表示什么?(实际少画了6条腿)4-2=2表示什么?(一只兔比一只鸡多2条腿)。102=5表示什么?(鸡有5只)8-5=3表示什么?(兔有3只)师:上面的方法有什么共同的特点?

3、师:除了全部假设为鸡或兔,我们还可以假设每种各有一半,可以怎样假设?师:如果是总过8只可以假设鸡有4只,兔有4只。如果是11只呢,我们可以怎样假设?师:如果是偶数,我们可以假设每种各有一半;如果是奇数,我们可以假设一种为一半多一点,另一种为一半少一点。而且,此类假设我们用表格来解决。师出示表格 鸡的只数

兔的只数

腿的条数

和22条腿比较

师根据学生的回答分别板书。

4 4 42+44=24

多了2条在这里多了2条,表明什么?按照刚才的`假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。

4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。

5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。

三、以引入题为辅,再次巩固假设法。

1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。

2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。

方法一:354=140(条) 方法二:352=70(条) 140-94=46(条) 94-70=24(条) 4-2=2(条) 4-2=2(条) 鸡 462=23(只) 兔 242=12(只) 兔 242=12(只) 鸡 462=23(只)方法三: 鸡的只数

兔的只数 18 20 23

腿的条数 17 15 12

和94条腿比较 182+174=104 多10条 202+154=100 多6条 232+124=94 正好

小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

四、以例题为练,提炼假设方法。

1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。

2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

五、总结。师:你什么收获?

《解决问题的策略—— 一一列举》 篇三

教学目标:

1.使学生经历用一一列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。

2. 使学生在对解决简单实际问题的过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。

4.使学生体会到北京奥运会弘扬了团结、友谊、和平的奥林匹克精神,做为新时代的小学生应情系奥运,胸怀祖国,放眼世界。

教学重点:能对信息进行分析,用“一一列举”的策略解决实际问题。

教学难点:能有条理的一一列举,发展思维的条理性和严密性。

教学准备:课件、小棒、练习纸

教学过程:

一、课前欣赏:

奥运会圣火点燃的瞬间,多名奥运冠军夺冠的精彩瞬间。

二、创设情景

(一)创设情景,引出问题

1、导入:同学们,今年暑假里我国举办了一个体育盛会,你知道是什么吗?

对了,是2008北京奥运会。全体中国人民为了奥运会能圆满成功的举行,做了大量的准备工作。

2、示题:我们来看:奥运会的志愿者们,正要用屏风围起一个供运动员休息的长方形场地,(见课件) 有18个屏风,每个长1米,会有多少种不同的围法?

师:从题目中我们可以得到哪些数学信息?

(提示:18个1米长的屏风围成一个长方形,也就是说围成的长方形的周长是多少?)

生:18个1米长的屏风围成的长方形周长就是18米。

3、动手操作:

师:我们利用手中的小棒,来代替屏风,

同桌合作 ,用小棒摆一摆,说出你摆的长方形长和宽分别是多少?

①汇报交流:

生1:长8,宽1米。

生2:长5,宽4米。

②师:刚才我们用摆小棒的方法得到有4种不同围法,那么,如果从数学方法来思考,我们还可以用表格来列举。

4、运用填表列举

(1) 出示表格:

长方形的长/米

长方形的宽/米

师:长方形的长与宽的和会怎样?

生:长和宽的和一定是9米。

学生自主填表。

(2)师:一共列举出多少种围法?

( 展示不同的列举顺序。)

师:比较学生两种围法(有顺序和无顺序)哪种好? 板书:有序

师:用表格列举与摆小棒相比有什么好处?

生:不重复,不遗漏。 板书: 不重复,不遗漏

小结:在列举的时候我们要按照一定的顺序,这样答案才能不重复、不遗漏。按照一定的顺序把问题的答案一个不漏地列举出来,这种解决问题的策略就是一一列举。(板书:一一列举)

5、反思列举方法

观察这张表格,如果你是志愿者你会选择那种围法? 为什么?(同桌交流)

感知列举策略(根据学生的回答,出示各长方形图)

这4个图形的面积分别是多少?

(面积大,什么情况下面积大?)

通过学生的讨论,得到结论:在周长不变的前提下,当长方形的长和宽的差距越大,面积就越小;长方形的长和宽越接近,面积就越大。

过渡:(同学们真爱动脑筋,一一列举后还能发现其中的规律。)

(二)、自主探究,解决问题

1、呈现问题,理解题意

下面,我们到奥运纪念品专卖店看看吧,这里的商品真是丰富啊,你们最喜欢什么啊?

是啊,曹老师也最喜欢奥运福娃了。只是很可惜,福娃太畅销了,就剩下3个。如果老师要买福娃,最少买1个,最多买3个。你能帮我算算有多少种不同的买法吗?

提问:你准备用什么策略来解决这个问题?

提问:“最少买1个,最多买3个”是什么意思?(买一个、买两个、买三个)

你打算怎么买?

(同桌或前后交流讨论)

2、分类思考,完成列举

(1)你打算先考虑买几个的情况?然后再考虑买几个的情况?最后呢?

(指名说说。适当板书)

(2)我们也可以填表列举:用打“√”的方式来表示不同的购买方法。(示表)

老师带领学生分析只买一个的购买方法,填表。

购买方法

只买1个

买2个

买3个

贝贝

晶晶

欢欢

循序渐进,深入问题: 接下去又要怎样思考呢?请你分析另外两种情况各有几种买法,并继续用表格完成列举。(教师巡视,指导填表)

3、个别展示,集体交流

指名某小组具体介绍是怎么列举的,同步展示表格列举。

可追问:如果买2个,有几种不同的方法?(注意有序性)如果买3个呢?谁能具体说说是哪几种方法?(多媒体演示在表格中打“√”)

答:一共有7种不同的购买方法。

当然,我们还可以用字母表示的方法来进行列举,比如说:贝贝、晶晶、欢欢分别可以用a、b、c来表示,那么,只买1个的情况就有a、b、c3种买法,而买2个的情况就有(学生补充),还有3个全买的情况就是(生答)。

小结:解决问题的策略一一列举可以是表格、字母等不同的方式。

4、引导反思,突出关键

问:刚才我们在解决买福娃的问题时,是分几部分来完成列举的?

(也就是先把买的情况进行分类,然后再根据各个情况的不同买法进行有序列举)

(板书:分类)

你认为要得到全部答案,列举时要注意什么?

小结:有的时候列举时要先分类,再逐类进行列举。这样做就 “不重复,也不遗漏”。

三、拓展应用

1、在奥运赛场外,同学们正进行激烈的体育游戏呢,瞧,他们在投飞镖。投中内圈10环, 中 圈8环,外圈6环。小华投中两次,可能得到多少环?(多媒体出示该题)

(1)“投中两次”是什么意思?投中两次最多的多少环?最少的多少环?按照顺序列举,一共有多少种不同的环数?

请在练习纸上自己列举出所有可能的答案。

(2)让学生独立完成列举,并引导学生有条理地表达列举思考的过程。说说这样做的好处。

(10+10=20、8+8=16、6+6=12、10+8=18、10+6=16、8+6=14)

(10+10=20、10+8=18、10+6=16、8+8=16、8+6=14、6+6=12)

小结:一一列举时要想做到不重复不遗漏,就需要有条理地思考:按一定的顺序思考或分类思考都是有条理的思考。

2、大家看了今年北京奥运会男子乒乓球单打的比赛吗?我国的马琳、王皓、王励勤包揽了金、银、铜牌,奥运会迎来三面五星红旗同时升起的辉煌时刻。(见图)

假如下一届2012年伦敦奥运会上,我国还是派出这3位选手参赛,请你预测一下,他们进入四强的情况会有哪些?(见图)

先让学生讨论会有几种不同人数进入四强?(即先分类。)

再逐一列举。

(1)无人进四强,1种;

(2)一人进四强:马琳或王皓或王励勤 有3种;

(3)2人进四强:马琳与王皓、马琳与王励勤、王皓与王励勤,有3种;

(4)3人全进四强,1种。

共有8种不同的情况。

当然,我们最希望看到的是(最后一种情况,他们全部进入四强,为国家争光)

四、总结

这节课你学会了什么?有哪些收获和体会?

通过这节课的学习,我们又认识了一种新的解决问题的策略:“一一列举”。不知道你们发现没有,在用一一列举策略的同时,我们经常还会用到哪些其他策略?(列表、画图)随着你们知识的增长,将来一定会发现更多、更妙的解决问题的策略。列举使我们获得解决问题成功体验,也请课代表把全班同学上课的感受一一列举出来,然后告诉曹老师,好吗?

解决问题的策略教案 篇四

目标预设:

1、让学生在解决问题中学会用“倒推思维”的策略寻求解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

2、在观察、操作、讨论、交流中提高探索和解决实际问题的能力,获得解决问题成功体验。

3、让学生在对解决实际问题中不断反思,感受“倒推思维”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

4、培养学生独立思考、善于倾听、质疑和验算的数学学习习惯。

教学重点:

体会策略是解决问题的计策,学会用“倒推思维”的策略解决问题。

教学难点:

能根据具体的问题确定合理的解题步骤。

教学具准备:

果汁杯两个、一瓶400毫升的果汁、果汁图片、小黑板若干

课程实施:

课前游戏:

1、做相反动作

2、猜数字游戏

一个数加2得8,这个数是——

一个数减2得8,这个数是——

一个数乘2得8,这个数是——

一个数除以2得8,这个数是——

师:你们的表现真的很棒。

师生问好!

一、生活数学,激趣启智

师:从课前游戏中我发现,咱班同学特别喜欢数学,今天就让我们随同冬冬和明明,去寻找生活中的数学,一同研究解决问题的策略。

出示课题:解决问题的策略

师:上周末,他俩去海门表妹家玩,乘坐的`公共汽车从余东出发,沿途经过了树勋、麒麟、汤家、三厂,到达了海门。

小黑板出示:余东树勋麒麟汤家三厂海门

师:想想如果他们想原路返回,会依次经过哪些乡镇呢?

生齐:海门、三厂、汤家、麒麟、树勋、余东。

师:在回答这个问题时,我们都是——倒过来,一个一个往前推。

板书:倒推。

二、引导探究,掌握方法

师:车子终于到了表妹方方家了,方方正准备了400毫升的果汁来招待好朋友呢?

出示图片、实物(两杯果汁不一样多)

师:都是好朋友,这样公平吗?

生:不公平。

师:怎样就公平了?

生:两杯一样多。

师:如果从甲杯倒入乙杯40毫升后一样多,那你知道原来两杯果汁各有多少毫升吗?

师:请先独立思考,然后说说你第一步是怎么想的?

生:共有400毫升,现在果汁同样多,那就说明都有200毫升。

教师根据学生的回答,进行板书。400÷2=200ml

甲杯(____毫升)乙杯(____毫升)

现在

原来

教师出示小黑板

师:接下来呢?

学生说算式,教师板书。

甲:200+40=240ml

乙:200-40=160ml

师:同意他的观点吗?让我们一起通过操作来验证一下吧。

师:要想知道原来是多少?我们可以倒回去,观察果汁与刚才有何变化?教师演示

引导学生说出:甲杯在200毫升的基础上就多了——40毫升,这就说明了,甲杯原来比现在——多40毫升。那乙杯呢?

生:乙杯原来比现在少40毫升。

师:现在你能把表格补充完整吗?

师:如何确定自己的结果是不是正确呢?(口述验算过程)

师:喝完了果汁,方方给他俩讲起了她最近收集邮票的情况。

小黑板出示:方方原有一些邮票,最近又收集了24张,送给好友小军30张,还剩52张。方方原有多少张邮票?

师:请同学们默读一遍,想想从题中你读出了哪些信息?

生齐说:冬冬原有x张,又收集了24张,送给小军30张,还剩52张。

师:①想想用什么方式能清晰地把方方的邮票变化情况表示来?

独立思考,并在纸上写一写、画一画、连一连。

②在小组里交流,说说你是准备如何解决的?

③最后独立列出算式。

学生按要求逐步尝试。教师关注学生反应,把较好的作品画在小黑板上。

小黑板出示:冬冬原有?张又收集了24张送给小军30张还剩52张

师:这是某某的思考方式,让我们来听听他是怎么想的?

生:我是这样思考的:现在有52本。把送给小军的30张要回来,那就是52+30=82张了,如果没有收集到24张,就是82-24=58张。

学生回答时,教师边板书反向箭头。

师:你们听明白了?谁来说说刚才这位同学是怎么思考的?

生复述

师:你真会倾听别人的发言,能把刚才这位同学的思路清晰的表达了出来。老师也听懂了。就是现在有52本。把送给小军的30张要回来,那就是52+30=82张了,如果没有收集到24张,就是82-24=58张。

师:能根据这样的思路把算式列出来吗?

生齐说,教师板书52+30-24=58张

师:看着这样的算式你有什么疑问吗?

师:老师有个问题,送给小军30张后变少了,应用减法,为何计算时用了加上了30?

生:……

师:是呀,送给小军30张后变少了,是针对原来的邮票张数来说的,但现在我们知道了结果还剩52张,要求原来的,所以要反过来加30张。明白了吗?

师:还有其他的思考方式吗?

生:……

教师根据学生的解释,列出算式,52+(30-24)

师:你觉得这样列式有道理吗?谁来说说。

生:我是这样思考的:收集24张又送人30张,实则相当于送人6张,送人6张后是52张,那原来是52+6=58张。所以列式为52+(30-24)

师:这个6表示现在比原来……(如果学生不会说,可引导学生继续说下去)

师:怎么知道算出来的结果对不对呢?(再可以顺过去推算,看剩下的是不是52张。)

师:你能用算式表示验算的过程吗?

学生边说,边板书验算过程。58+24-30=52张

师:通过了验算,我们才可以放心的写出答了。

板书:答:冬冬原有邮票58张。

师:刚才的两题我们都运用倒过来思考的

方式,实际上这也是解决问题策略中的一种,这种方法就叫——倒推法。

板书:法

三、运用方法,巩固知识

师:接下来,让我们运用倒推法一起解决他们三人遇到的生活中的问题。

拿出练习纸。认真完成好后,请思考题。

学生独立思考完成。

练习纸

①冬冬和明明也示了他们的画片,他们原来共有60张画片,冬冬给了明明5张后,两人画片一样多。原来两人各有多少张画片?

②他们三人开始折千纸鹤了,如果裁纸要用5分钟,折纸鹤要25分钟,把纸鹤穿成一串要用10分钟。若要在上午十时全部完成,那么他们最迟从什么时间开始动手做?

③明明也给他们讲起了班级图书角的信息,他说昨天图书角原有一些图书,当天有人捐献了3本图书放入图书角,班级同学共借出10本,现在有8本,问原有图书多少本?

④玩了一天,冬冬和明明开始返回了,他们乘坐的公交车在文峰站点上来了9人,又下去了5人,这时车上正好有10人。问到站前车上原有多少人?

池中的睡莲所遮盖的面积每天增加一倍,10天恰好遮住整个水池,睡莲遮住水池的一半需要多少天?

(用阴影表示出每天的面积变化情况)

第10天第9天第8天

师:同桌交换,谁能确认自己的答案是正确的?

师:告诉我你是怎么做到这样自信的?

生:我检验的。

师:那你说吧。

同桌互批。

师:有错误的举手。教师询问原因,全班一同解决。

师:题结果是9天。

五、课堂小结

师:从大家的表现来看,你们掌握的很好。说说这节课你有哪些收获吧。

生:……

师:总结,解决问题的策略多种多样,今天学习的倒推法仅仅是众多方法中的一种,根据题目的要求选择合适的解决方法是最为重要的。

教后反思:

本节课从路线问题导入,让学生体会从原路返回时会依次经过哪些乡镇着手,初步体会倒推法的策略在生活中的价值,激起学生浓厚的学习兴趣。

教学例题时,创设具体的生活情境,通过两个学生的行程,把两个例题有机的串联起来。教学例1时,通过让学生先独立思考,然后通过演示操作,,让学生更好地体会解题过程。这里当学生说到甲杯比乙杯多80毫升时,应恰当地处理。教学例2时,通过箭头的思路图,清晰的表示出邮票张数的变化情况,教学时,引导学生提出质疑,理解送出的为何要加。同时对于第二种解法教师应更好地进行解释。

练习设计了分层题,使学有余力的同学学得更多。基本练习题更关注了与例2类似的练习,使同学们掌握的更加的牢固。

《解决问题策略》评课稿 篇五

今天下午,特级教师朱xx工作室走进xx小学,开展教学研讨活动。卫老师的《解决问题的策略》一课中,学生争相展示自己的想法,踊跃表达自己的思考过程,这一课给我的启示颇多。

学生在学习一步计算的实际问题时,已经能够根据给定的两个已知条件提出一步计算的问题,具备了学习“从条件向问题推理”的思想基础。

卫老师的课堂从一包棒棒糖开始,这是给课中表现好的孩子的奖品。别以为这只是一个奖品,这里它也引发了一个数学问题,“猜一猜里面有多少根?”顿时孩子们七嘴八舌,各有各的猜测。当卫老师再给了一个提示,“比他猜的24根少2根”时,孩子们异口同声地说出了答案。生活中的例子给了孩子们无穷的求知欲,孩子们个个兴趣盎然,轻松愉悦的课堂就从这里开始了。

例题引导学生从条件想起,初步获得从条件向问题推理的体会。

小猴第一天摘30个桃,以后每天都比前一天多摘5个。小猴第三天摘了多少个?第五天呢?学生读题以后,会把注意力集中在“以后每天都比前一天多摘5个”这个条件上面。教师学生深入思考,充分说说对这个条件的理解,把比较概括的已知条件尽量说具体、说详细。

出于对已知条件“每天都比前一天多摘5个”的充分理解,多数学生就会形成自己的解题主张,很自然地依次计算第二天、第三天……各摘多少个桃。这些想法,不是教材或别人告诉学生的,而是他们根据条件向问题推理的结果,是分析数量关系的结果。卫老师适时引导孩子讨论:说一说先根据()和(),求出(),再根据()和()求出(),帮助孩子理清思路,学会自己分析问题。

卫老师提供了教材中的两种方法解决这个问题,通过填表或列式计算求出答案,同时也鼓励孩子们能用自己的。第三种解决这个问题。

回顾解决问题的过程,交流解题的体会,是学生形成解决问题策略不可缺少的环节。“从条件想起,向问题一步步靠拢”应该是所有学生的共识。让孩子们体会自己是从条件“每天都比前一天多摘5个”得出解题思路和方法的,感受像这样思考是解决问题的一种有效方法。

巩固练习安排的实际问题,都是应用本课教学的思考策略,有利于学生更好地适应从条件向所求问题的推理。

习题中有一题涉及到生活中球的反弹,为了让孩子们更好地理解“每次弹起的高度总是落下高度的一半”这句话,卫老师精心设计了视频进行演示,让孩子们的理解更直观,更具体。根据演示,孩子们可以依次填出球第一次、第二次、第三次的高度。生动的多媒体演示恰到好处,让孩子们数学的学习不再抽象。

小猴铺地砖的习题是对孩子们思维的提升。有170块地砖和50千克水泥,白地砖有8行,每行15块,花地砖比白地砖少70块。求花地砖的块数。孩子们需要自己选择有用的条件来解决问题。这题有两种思路,既可以先求出白地砖的块数,再根据“花地砖比白地砖少70块”求出花地砖的块数;也可以先求出白地砖块数,再根据“有170块地砖”来求出花地砖的块数。从条件向问题推理的过程,是对问题情境里的数学信息进行“再加工”的过程。孩子们能够把比较复杂的问题化简,找到问题情境里有直接联系的已知条件,并利用它们得出新的数量。

以上我只简单地说了卫老师的课堂安排让我深思,更还有精心制作的课件大大提高了教学效果,老师的教态自然亲切,和孩子的配合密切,学生在活动中积极思考,学习积极性高,课堂气氛活跃等,这些都是我在今后的教学中需要学习和改进的地方。

解决问题的策略 篇六

教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。

教学目标:

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:让学生体会替换策略的优越性。

教学难点:对替换前后数量关系的把握。

教学准备:

课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。

课前给学生合作要求纸。正面题目1和要求,反面自编题目。

事先写好课题:解决问题的策略

打开课件

教学过程:

一、创设情景导入:

有谁带了钢笔吗?(学生举手)

老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?

要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)

(严肃,让学生觉得真换)

怎么啦?(学生说说)

是啊!

那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?

为什么?(老师:成交!)

用铅笔换钢笔依 据

板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔 ( 价格相当)

那你说说看为什么非要老师用十支铅笔才肯换呢?

(引导学生说出价钱差不多)

紧接板书:价格相当

十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。

板书:依据

师:闹了半天,你当老师来做生意了吧。不,可别小看这个"换"字,交换的换,替换的换,就是这个换字,它确是蕴涵着一种的数学方法。而且这个方法已经有悠久的历史了。早在1800年前的三国时代就有位7岁的孩子使用了这种换的方法,被传为一段千古佳话。你们知道他是谁吗?

二、温故知新:

课件打开到曹冲称象图片。

对,课前大家已经熟悉了这个故事。那谁能告诉我,曹冲是怎么解决称大象体重这个难题的呢?

(他用什么替换了什么?)

你能联系上面情节讲一讲它替换的依据是什么呢?

(鼓励性评价:真聪明)

石头和大象的重量相同作为替换的依据。

那曹冲是怎样来保证石头和大象的重量相同呢?

板书:一堆石头---------替换----------一头大象 ( 重量相同)

曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。

板书:添上----替换两字

三、协作创新

曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。

三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。

(简略介绍其中的走舸和楼船。)

赤壁大战,东吴向前方军营增派105名援军。如果用10艘走舸和1艘楼船来运,一次就可以运完。每条走舸乘坐的士兵人数是楼船上士兵人数的1/5。 那每艘走舸装了多少士兵,楼船上又装了多少士兵呢?

题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。

生一起读题

你知道了哪些信息?

这道题目能用“替换”的策略解决吗?

接下来请同学们按照题目下面的要求,来亲身体验一下替换。

同桌合作:

1 用什么替换什么? (把题目中替换的双方圈一圈)

2 替换的依据是什么?(在题目关键句的下面画一画)

3 替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)

小组交流:

知道怎么替换了的同学请举手

你们在替换的时候,有没有想到替换有什么好处啊?

请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?

1 替换有什么好处?

2 你替换的方法和其他同学完全一样吗?

结合课件画面讲解,板书

一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)

课件展示:

替换前

(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)

替换后

(15走舸,出示数量关系:15艘走舸一共装了105名士兵)

让学生计算。并讲一讲过程(数量关系)。

(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)

两种方法都讲解完后,让学生说说替换的好处。

四、巩固立新:

俗话说得好:兵马未动,粮草先行。

东吴又准备用船和马车同时向军营输送粮草,已知每条运粮船比每辆马车能多运15袋粮食,2条运粮船和5辆马车水陆并进,刚好能把100袋粮食一次运到军营,每条运粮船和每辆马车各运了多少袋粮食?

这个问题还能用替换的策略解决吗?

请学生说说如何替换?

板书:一条运粮船----------替换----------(一辆马车+15袋)

让学生在自备本上用自己喜欢的方式画一画。

实物投影展示替换方法。(最好选文字和图画各一份)

数学是需要简洁和凝练的,看赵老师怎么来做。。。

强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?

课件演示思考过程。

同桌之间互相说说:替换前后的数量关系分别是什么?

学生自己列算式解答。

请学生说说替换的好处。

五、博古通今:

学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。

学生独立完成

让一学生上黑板进行板演(力求作出示意图)。

全班交流

引导学生把四大名著换成三国演义

并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。

六、自编自演:

大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。

请大家开动脑筋,根据 5角硬币 1元硬币 储蓄罐 三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)

七、课堂小结:

今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。

解决问题的策略 篇七

教学内容:五上第63~64页的例1、例2和练一练。

教学目标:

1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。

2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

3、增强解决问题的策略意识,提高解决问题的实际能力。

教学重点:能对信息进行用“一一列举”的策略解决实际问题。

教学难点:能有条理的一一列举,并进行分析

教学准备:小棒、表格、

教学过程:

一、创设情景,体验列举

1、课前游戏:飞镖激趣

请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?

师:如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?

打印:

板书:一一列举

2、揭示课题:

师:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。

板书课题:解决问题的策略

二、自主探究,运用列举

(一)创设情景,引出问题

1、引发列举需要。

出示例题:(小黑板出示)

王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?

(1)创设情景:

师:图上有哪些数学信息?生:18根1米长的栅栏围成的长方形周长就是18米。

师:围的时候要考虑什么?生:长方形的长和宽。

(2)猜猜看会有几种围法。

(3)动手操作:

师:以两人小组为单位用小棒摆一摆,并记录你摆的长方形长和宽分别是多少?

①汇报交流:

生1:长8,宽1米。

生2:长5,宽4米。

……

②师:如果是180根栅栏用小棒摆又会怎么样?

生1:用小棒摆有点烦。

生2:答案可能有重复和遗漏(板书:重复、遗漏)

师:那么你们有什么好的方法?

2、运用填表列举

(1) 出示表格:

师:用表格列举长和宽的和会怎样?生:长和宽的和一定是9米。

(打印表格每人一张)

(2)师:一共列举出多少种围法?

师:比较学生两种围法(有顺序和无顺序)哪种好? 板书:有序

师:用表格列举与摆小棒相比有什么好处?

生:不重复,不遗漏。 板书: 不重复,不遗漏

小结:在列举的时候我们要按照一定的顺序列举,这样答案才能不重复、不遗漏。

3、反思列举方法

(1)观察这张表格,你有什么新的发现?[小组里交流]

(2)师:如果你是工人师傅你会选择那种围法?

教师说明:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。

师:你们是用什么策略解决这个问题的?

小结:通过一一列举可以将答案不重复、不遗漏的列举出来。

(二)循序渐进,深入问题

1、出示题目:(小黑板)

订阅《科学世界》、《七彩文学》、《数学乐园》杂志,最少订阅1本,最多订阅3本。有多少种不同的订阅方法?

师:想想,最少订阅1本,最多订阅3本是什么意思?

2、一一列举:

师:你们打算用什么策略解决这个问题?

生:一一列举。

师:列举时,打算分哪几种情况?

生:分三类:订阅1本、2本、3本。

师:分步出示表头和三类情况。

(1)列举时可以用老师提供的表格,在表格里打钩。例如:《科学世界》 “√”

(2)也可以用文字列举。例如:订阅1本、2本……

师:用自己喜欢的列举方式进行吧!

3、反馈交流:

师:你是怎样列举的?

师:一共有几种不同的情况?

三、拓展应用,发展列举

1、飞镖游戏:

师:“每人投中两次”是什么意思。

师:有多少种不同的情况?请在练习纸上自己列举出所有可能的答案。

2、完成练习十一第1题、第2题:

四、总结延伸,发展列举

1、通过这节课的学习,我们又认识了一种新的解决问题的策略 “一一列举”。

思考:

(1)五(2)班有48人去划船,每条大船可坐6人,每条小船可坐4人;有多少种租船方案?

(2)五(2)班有48人去划船,每条大船可坐6人,每条大船租金24元;每条小船可坐4人,每条小船租金20元;哪种租船方案最省钱?