1. 主页 > 知识大全 >

六年级上册数学《倒数的认识》教案优秀14篇1-11-61

作为一名专为他人授业解惑的人民教师,通常需要准备好一份教案,借助教案可以让教学工作更科学化。那么什么样的教案才是好的呢?旧书不厌百回读,熟读精思子自知,下面是细心的小编给大家收集的14篇倒数的认识的相关内容,欢迎借鉴。

倒数的认识 篇一

教学内容:苏教版第十一册第27-28页

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟 练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学 生的自主学习能力,提高学生观察、比较、抽象、归纳以及合 作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:倒数的意义与求法。

教学难点:1、0的倒数,小数、带分数倒数的求法。

教学用具:媒体展示台

教学过程:

一、竞赛激趣,揭示课题。

1、谈话:

师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。

(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)

2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。

师:短短30秒你们就写出了这么多算式,本领真大,由此也反映出数学课堂里“时间就是效率”的真谛,我们从小要养成珍惜时间习惯。

追问:如果老师再给你们一些时间,你们还能写吗?能写多少个?

生:可以。能写无数个。(板书:无数)

4、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)今天这堂课我们就来学习倒数的知识。

[以学生喜爱的竞赛拉开一堂课的序幕,充分调动学生学习的主动性与积极性;借助30秒的竞赛时间教育学生要珍惜时间,让德育教育的内容渗透在数学课;通过追问让学生初步感知倒数有无数组,同时竞赛的内容为倒数意义的揭示打下伏笔。]

二、引导质疑,自主探究。

1、引导质疑。

师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?

生:什么是倒数? 生:倒数是指一个数吗?

生:倒数应该怎样表述? 生:怎样求倒数?

生:倒数是不是一定是分数? 生:倒数有什么用?

生:是不是每个数都有倒数? ...........

2、自主探究。

(1)、明确学习方法。

师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。

(2)、学生自学讨论,教师指导。

(3)、组织全班交流。

你现在知道什么是倒数了吗?

怎样求一个数的倒数?

3、质疑:在自学的过程中你们还有什么疑惑的地方吗?

[“以学定教”是教学设计的指导,学生是学习的主人,教师是学生学习活动的组织者、引导者,协作者。在学生的学习过程中:问题应由学生提出,方法应由学生寻找,规律应由学生发现、总结。本环节通过学生“质疑-自学-合作讨论-交流”的流程提高学生发现问题、解决问题的能力以及合作学习的能力。]

三、巩固提高,拓展外延。

师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?

(1)、说出下列各数的倒数,说说你是怎么想的?

、 、 、8、1、0、

(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)

(2)、课本练习题:第4题。

(3)、判断:

a、9的倒数是 。

b、任何真分数的倒数都是假分数。

c、任何假分数的倒数都是真分数。

d、是倒数。

e、1的倒数是1,0的倒数是0。

(4)、开放题:

×( )=( )× = ×( )=6×( )

你会填吗?你能用今天学到的知识来填吗?

[倒数是两个数之间的一种关系,学习它主要是为今后学习分数除法服务,以上设计一方面是巩固学生对倒数概念的掌握,另一方面又是让学生在旧知里建构新知,应用新知,从而进一步感悟到知识的内在联系。]

四、总结反思,发展能力。

师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

生:提问-自学讨论-练习

师:你能用“我学会了--”来描述今天学到的知识吗?

生:.......

[通过引导学生反思学习方法,让学生清楚地意识到自学讨论的作用。用“我学会了。”来描述学到的知识,一方面是培养学生经常总结自己学习的习惯,另一方面提高学生的语言表达能力。]

本教学设计的特点:

1、构建“自主-合作探究”的自主学习模式。

新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。

2、“以学定教”重新定位教师与学生角色。

新课程强调:学生是数学学习的主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素养。

3、注意学科间的整合。

数学是一门比较抽象的、理性占主导的学科。最优化的数学学习不仅要完成本门学科特定的任务,还应巧妙整合完成其它学科的任务。在本教学设计中,最后我让学生反思学习的方法,用“我学会了--”来总结自己的学习后的收获,这是整合语文学科对学生的语言表达能力训练。

倒数的认识 篇二

教学内容:苏教版第十一册第27-28页 倒数的认识

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟 练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学 生的自主学习能力,提高学生观察、比较、抽象、归纳以及合 作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:倒数的意义与求法。

教学难点:1、0的倒数,小数、带分数倒数的求法。

教学用具:媒体展示台

教学过程:

一、竞赛激趣,揭示课题。

1、谈话:

师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。

(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次(快回答★www.kaoyantv.com))。(写在白纸上)

2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。

师:短短30秒你们就写出了这么多算式,本领真大,由此也反映出数学课堂里“时间就是效率”的真谛,我们从小要养成珍惜时间习惯。

追问:如果老师再给你们一些时间,你们还能写吗?能写多少个?

生:可以。能写无数个。(板书:无数)

4、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)今天这堂课我们就来学习倒数的知识。

[以学生喜爱的竞赛拉开一堂课的序幕,充分调动学生学习的主动性与积极性;借助30秒的竞赛时间教育学生要珍惜时间,让德育教育的内容渗透在数学课;通过追问让学生初步感知倒数有无数组,同时竞赛的内容为倒数意义的揭示打下伏笔。]

二、引导质疑,自主探究。

1、引导质疑。

师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?

生:什么是倒数? 生:倒数是指一个数吗?

生:倒数应该怎样表述? 生:怎样求倒数?

生:倒数是不是一定是分数? 生:倒数有什么用?

生:是不是每个数都有倒数? ...........

2、自主探究。

(1)、明确学习方法。

师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。

(2)、学生自学讨论,教师指导。

(3)、组织全班交流。

你现在知道什么是倒数了吗?

怎样求一个数的倒数?

3、质疑:在自学的过程中你们还有什么疑惑的地方吗?

[“以学定教”是教学设计的指导,学生是学习的主人,教师是学生学习活动的组织者、引导者,协作者。在学生的学习过程中:问题应由学生提出,方法应由学生寻找,规律应由学生发现、总结。本环节通过学生“质疑-自学-合作讨论-交流”的流程提高学生发现问题、解决问题的能力以及合作学习的能力。]

三、巩固提高,拓展外延。

师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?

(1)、说出下列各数的倒数,说说你是怎么想的?

、 、 、8、1、0、

(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)

(2)、课本练习题:第4题。

(3)、判断:

a、9的倒数是 。

b、任何真分数的倒数都是假分数。

c、任何假分数的倒数都是真分数。

d、是倒数。

e、1的倒数是1,0的倒数是0。

(4)、开放题:

×( )=( )× = ×( )=6×( )

你会填吗?你能用今天学到的知识来填吗?

[倒数是两个数之间的一种关系,学习它主要是为今后学习分数除法服务,以上设计一方面是巩固学生对倒数概念的掌握,另一方面又是让学生在旧知里建构新知,应用新知,从而进一步感悟到知识的内在联系。]

四、总结反思,发展能力。

师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

生:提问-自学讨论-练习

师:你能用“我学会了--”来描述今天学到的知识吗?

生:.......

[通过引导学生反思学习方法,让学生清楚地意识到自学讨论的作用。用“我学会了。”来描述学到的知识,一方面是培养学生经常总结自己学习的习惯,另一方面提高学生的语言表达能力。]

本教学设计的特点:

1、构建“自主-合作探究”的自主学习模式。

新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。

2、“以学定教”重新定位教师与学生角色。

新课程强调:学生是数学学习的主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素养。

3、注意学科间的整合。

数学是一门比较抽象的、理性占主导的学科。最优化的数学学习不仅要完成本门学科特定的任务,还应巧妙整合完成其它学科的任务。在本教学设计中,最后我让学生反思学习的方法,用“我学会了--”来总结自己的学习后的收获,这是整合语文学科对学生的语言表达能力训练。

倒数的认识 篇三

一、揭示课题

师:在我们小学语文中学过许多多音字,大家看这一个词该怎么读?(板书:倒数)

生:(窃窃在读)

师:读给老师听一听

生(齐):倒数(dào shù)

师:真是老师的弟子,心有灵犀,跟老师的读法一模一样,怎么没读成倒数(dào shǔ)呢?

生:咱们学的数学,肯定与数有关,怎么会读成dào shǔ呢?

师:大家同意这种解释吗?

生:同意

师:刚才这个孩子说的很好,倒数肯定跟数有关,大家回忆一下,目前为止学过哪些数?

生:整数、自然数

生:不对,整数包括自然数,还有分数、小数

师:也就是说三种数,整数、分数、小数,同意吗?

生:同意

师:(板书:整数、分数、小数)

师:谁能举几个整数的例子?

生:3,5,100,99

师:很好,还有吗?数字能不能大点儿?

生:999

师:很好,这个数字我喜欢

生:1688

师:一路发发,好,我喜欢,写上。能不能再小点?

生:1

师:小棒1,最基础的数字,写上。还有吗?还有一个最不起眼的数字(老师手势表示)。

生(齐):0

师:对吗,怎么把这个忘了?写上。

师:谁能举几个分数的例子?

生:2(1)、10(3)、8(7)……

师:很好,这些都是真分数,能不能举些假分数?

生:3(5)、99(100)……

师:噢,能不能再举一些样子不一样的呢?

生(抢):应该是带分数了。

师(竖起大拇指):真棒!

生:12(1)、35(2)……

(学生举例的过程中老师选一些有代表性的板书)

师:好了,该举小数了?

生:0.3、0.8……

师:这些是纯小数,能举带小数吗?

生:1.5、3.6……

(同样,老师选一些有代表性的板书)

师:好了,现在咱们步入正题,这节课咱们一起来研究“倒数”。(题目补充完整:倒数的认识)

二、铺垫新知

师:看到这个课题,你想说点什么?

生:倒数是一种什么样的数?它是怎么倒过来的?

生:到底什么是倒数?它和以前学过的数有什么区别?

师:你们两个的意思也就是说想知道什么是倒数?(板书:倒数的意义)大家还想知道什么?

生:学倒数有什么用途?

师:很好,还有吗?

生:倒数能求吗?能运算吗?

师:也就是怎样求倒数(板书:求倒数)

三、探究新知

(一)、倒数的意义

1、自学课本

师:请同学们自学24页例1,看看什么样的数是倒数呢?倒数的意义课本上都有,我们一看都知道。重要的是我们在学习中要有自己的发现。

2、初步探究

师:谁能举例说一说是什么样的数是倒数呢?

生:乘积是1的两个数互为倒数,比如8(3)×3(8)=1,它们的积是1,因此8(3)和3(8)都是倒数。

师:噢,有道理,我想问一下“互为”是什么意思呢?

生:互相称为。

师:怎么理解“互为倒数”呢?

生:沉默

师:举个例子吧,杜欣莹请起立(老师走到学生跟前),咱俩握握手,你是我的小朋友,我是你的大朋友,咱们两个互为朋友!同学们想一想,能不能单独地说:“杜欣莹是朋友,老师是朋友”?

生:不能!只能说“谁是谁的朋友”!我懂了!不能说8(3)、3(8)是倒数,只能说8(3)是3(8)的倒数,3(8)是8(3)的倒数!

生:老师,能不能说8(3)、3(8)互为倒数呢?

生:能!老师和杜欣莹互为朋友,8(3)和3(8)怎么能不互为倒数呢?

师:说的太好了,有两种说法来叙述倒数,一种是×和×互为倒数,另一种是×是×的倒数,不能单独的说×是倒数。同桌互相说一说例1中剩余的3个式子。

3、深入剖析

师:理解了“互为倒数”的意义,请看下面几题的说法对吗?为什么?

(1)4(3)+4(1)=1,所以4(3)和4(1)互为倒数。

生:错,互为倒数的两个数必须是积为1,而不是和为1。

师:(2)2(1)×3(4)×2(3)=1,所以2(1)、3(4)、2(3)互为倒数。

生1:似乎对呀!

生2:不对,互为倒数的必须是两个数,而不是三个数。

师:同学们,咱们分析一下,倒数这个概念中,重点的部分是什么呢?

生1:互为

生2:乘积是1

3:还有“两个数”

师:好,现在咱们已经深刻认识了倒数,那同学们再观察一下,例1中互为倒数的每一组都有什么特点?

生:分子、分母颠倒了位置,怪不得叫倒数呢!

(二)、倒数的求法

1、分数的倒数

师:那现在咱们能不能找到一个数的倒数呢?看黑板上的三类数,整数、分数和小数,哪种数的倒数最好找呢?

生(齐):分数

师:咱们就从最简单的开始吧!先看分数2(1)、10(3)、8(7),谁能说一下他们的倒数。

生1:很简单,分子、分母倒过来即可,分别是1(2)、3(10)、7(8)

生2:错,2(1)的倒数应为2。

师:12(1),35(2)的倒数又是多少呢?这个有点难,谁来说呢?

生1:老师,简单!分别为11(2),32(5)

生2:似乎不对呀!

生3:对!分子、分母分别颠倒了位置

生4:不对,老师你看它们的乘积不是1!

生(齐,恍然大悟):是的,不对!积不是1

师:孩子们,你们真棒!找到问题的关键了!那带分数的倒数我们该怎么找呢?能不能先把它们的样子先变一下呢?

生:老师,应该先把带分数化为假分数,然后分子、分母颠倒位置就行了!

师:这个发现太好了!孩子们用这个方法试试吧!

2、整数的倒数

师:分数的倒数大家会求了,整数的倒数又该怎样求呢?它没有分子、分母怎么办呢?

生:老师,可不可以把它先变成分数,然后分子分母颠倒位置。

师:这个想法不错!可怎么变呢?

生:所有的整数都可以看作分母是1的分数,这样不就行了吗?

师:说的太好了!大家同意吗?同桌互相说一说3、5、100、99、999、1688的倒数。

师:1的倒数是几呢?

生1:1可以看作是1(1),颠倒过来还是1(1)。

生2:不对,1(1)是个假分数,应化为整数1。

生3:因为1×1=1,所以1的倒数还是1。

师:所以1的倒数还是它本身。那0的倒数呢?

生:和1一样,0的倒数是0。

师:噢,是吗?再想想

生:0好像没有倒数。你看,0可以看作1(0),分子、分母颠倒成0(1),0作分母失去意义,不存在呀!

生:(掌声)

师:你的想法很有创意!握握手吧!

生:我的想法比他的好,因为找不到任何一个数和0相乘得1,这样0就没有倒数了!

生:(掌声)

师:我的弟子真了不起,王江浩和任南旭分别从两种角度分析0没有倒数,咱们就把这个发现叫“江南发现”好吧!

生:好!挺有诗意的!

3、小数的倒数

师:该攻破最难的堡垒了,求小数的倒数了!我先做一个,大家看对吗?0.3的倒数是3.0

生:(哄笑)错了!

师:错在哪儿?

生1:老师,你看0.3×3.0根本不等于1,怎么会是它的倒数呢?

生2:老师,你是不是糊涂了,是分子、分母交换位置,不是小数点左右交换位置!

师:(故作迷茫)那怎么办呢?

生:先把小数化为分数不就得了!

生:(齐鼓掌)

师:真是青出于蓝胜于蓝呀!孩子们咱们就用丁欣然发现的方法把这几个小数的倒数求出来吧!

四、综合练习

1、3(2)×( )=4×( )=9(1)×( )=0.75×( )=1 (学生说,老师写答案)

师:你有发现吗?

生:这道题其实就是求3(2)、4、9(1)、0.75的倒数,你看它们的积都是1。

师:现在擦去1,你认为有几种填法?

生:还可以让它们的积等于2,3……,所以有无数种填法。

师:但是根据倒数的意义来填是最容易考虑的,是吧?

2、一个数与它倒数的和是99(1),这个数是( )

生:这个数是9

师:为什么呢?

生:因为9的倒数是9(1),它们的和是99(1)

生2:那这个数也可是9(1)呀,因为倒数“互为”的吗!

师:是的,这个数应该是9或9(1) ,我们考虑问题还需要全面些

3、填符或或数字

①10÷2○10×2(1) ②9÷3○9×3(1)

(学生说,老师写)

③20÷( )=20×( )

生:20÷(2)=20×2(1) 生:20÷4=20×4(1)

……

4、总结延伸

出示:1÷3(2)○1×2(3)

师:你猜一下,中间能划等号吗?(生:能)那究竟为什么呢?我们下一节课再作研究,好吗?(生:好)

师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!谢谢大家,下课!

倒数的认识 篇四

教学内容:

教材第19页,例9和“做一做”中的题目,练习五的第1、2题。

教学目的:

使学生理解倒数的意义,掌握求倒数的方法。

教具准备:将复习题写在小黑板上。

教学过程:

一、复习

出示复习题,让学生口算各题。

(1)3/8×2/3= 3×1/3= 7/15×15/7= 1/80×80=

(2)3/8×1/3= 3/5×1/3= 7/15×5/7= 1/80×80/93=

二、新课

1、教学倒数的意义

教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都是1,第二组每个算式中两个数相乘的几不是1。)

教师:“像第一组这样,乘积是1的两个数叫做互为倒数。”

教师举例说明:3/8和8/3互为倒数,就是3/8的倒数是8/3,8/3的倒数是3/8。

教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。”

教师:“例如3/8是倒数,能不能这样说?”(不能)

教师再强调倒数是对两个数来说的。

然后让学生试着说一说第一组中其他3个算式中两个数的关系,说的时候,注意让学生说出“互为倒数”,同时让学生明确谁是谁的倒数。

教师:“谁还能举出几组两个数互为倒数的例子?”

多让学生说一说,并让其他学生根据倒数的意义来检验是不是正确。

2、教学求倒数的方法

(1)出示复习题的第一组算式。

教师:“观察互为倒数的一组数的分子、分母有什么特点?如果给你一个数你能说出它的倒数吗?”让学生适当讨论,并对发现的规律进行归纳。使学生明确:互为倒数的两个数的分子、分母是互相调换位置的。

(2)出示例题

教师:“怎样找出3/5的倒数呢?”

引导学生说出:“只要把3/5的分子、分母调换位置就是3/5的倒数,即:3/5的倒数是5/3

教师板书:

分子、分母调换位置

3/5 ─────────→5/37/2的倒数就可以让学生自己写。

教师接着问:“自然数3的倒数是多少?3可以看成分母是几的分数?”(3可以看成分母是1的分数。)

“那么3的倒数怎样求?”(把分子、分母调换位置,3的倒数就是。)

教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以这个自然数作分母以1作分子的分数。)

接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数。)

“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数。)

教师:“请大家总结一下求一个数的倒数的方法。”让学生多说一说,教师注意提醒学生把0排除在外。最后归纳出书上的结语。

2.做教科书第34页的“做一做”。

学生独立解答,教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导。集体订正时,有意识地让学习有困难的学生说一说是怎样想的。

三、巩固练习

1.做练习五的第1题。

学生独立填数,教师巡视,集体订正。对于学习有困难的学生,教师可以适当提示,如:“什么样的两个数相乘的积是1?那么,要填的应该是什么数?”

2.做练习五的第2题。

学生先独立找,教师巡视,看学生找得对不对,存在什么问题。集体订正时,可以让学习比较好的学生说一说是怎样找的。使学生明确,根据倒数的意义,只要看哪两个数的乘积是1,哪两个数就互为倒数。

四、小结

教师:“今天我们认识了倒数,请同学们说一说你们知道了倒数的那些知识?”

五、布置作业

练习五的3、4、9题。

倒数的认识 篇五

教学内容:教科书第23页的例题,练习六的第1~6题。

教学目的:使学生理解倒数的意义,掌握求倒数的方法。

教学过程:

一、复习

口算下面各题(课前写在黑板上)。

二、新课

1.教学倒数的意义。

教师:"上面的两组题有什么不同?"(第一组每个算式中两个数相乘的积都不是1,第二组每个算式中两个数相乘的积都是1。)

教师:"像第二组这样,乘积是1的两个数叫做互为倒数。"

教师举例说明什么叫做"互为倒数"。

和互为倒数,就是的倒数是,的倒数是。

教师:"倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的

倒数,不能孤立地说某一个数是倒数。"

让学生试着说一说第二组其它3个算式中两个数两关系。说的时候,注意让学生说出"互为倒数",同时,让学生明确谁是谁的倒数。

教师:"谁还能举出几组两个数互为倒数的例子?"多让几个学生说一说,并让其他学生根据倒数的意义来检验是不是正确。

2.教学例题(求倒数的方法)。

教师:"请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数。如果给你一个数你能找出它的倒数吗?"让学生适当讨论,并对发现的规律进行归纳。使学生明确:互为例数的两个数的分子、分母是互相调换位置的。

出示例题。

教师:"怎样找出的倒数呢?你能用刚才发现的规律找出来吗?"使学生想到只要把的分子、分母调换位置就是的倒数。教师板书。

倒数就可以让学生自己写。

教师接着问:"自然数3的倒数是多少?3可以看成分母是几的分数?"'(3可以看成分母是1的分数、)

"那么3的倒数怎样求?"(把分子、分母调换位置,3的倒数就是。)

教师:"任意一个自然数的倒数应该怎样求?"(一个自然数的倒数就是以这个自然数作分母以1作分子的分数。)

接着问。"是不是所有的数都有倒数?什么数没有倒数?"(0没有倒数。)

"0为什么没有倒数?"(因为0不能作分母,所以0没有倒数)

教师:请大家总结一下求一个数的倒数的方法。"让学生多说一说,教师注意提 醒学生把0排除在外。最后归纳出书上的结语。

3、做教科书第23页的"做一做"。

学生独立解答。教师巡视,了解学生掌握的情况,对学习有困难;的学生进行个别辅导、集体订正时,有意识地让学习有困难的学生说一说是怎样想的。对于的倒数,让学生说一说是怎样求的,使学生明确求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。

三、巩固练习

1.做练习六的第1题。

学生独立填数、教师巡视,集体订正。对于学习有困难的学生,教师可以适当提

示,如:"什么样的两个数相乘的积是:1?那么,要填的应该是什么数?"

2.做练习六的第2题。

学生先独立找,教师巡视,看学生找得对不对,存在什么问题。集体订正时,可以让学习比较好的学生说一说是怎样找的。使学生明确,根据倒数的意义,只要看哪两个数的乘积是1。哪两个数就互为倒数。

3.做练习六的第3题。

学生独立写出每个数的倒数。集体订正时,对于1的倒数还是1,可以让学生说一

下理由。

4.做练习六的第4题。

学生独立填写,教师巡视。集体订正时,让做得比较快的学生说一说是怎样想的。还可让学生说一下,有没有比较简便的方法。例如。20中乘数比1小、所以积肯定比被乘数20小,不必再算出它们的积再与20进行比较。

5.做练习六的第5题。

学生独立计算,教师巡视,了解学生对简便算法掌握的情况、集体订正时,可让一些学习有困难的学生说一说自己是怎样想的,应用了什么简便算法或运算定律。对于学有余力的学生,可让他们思考练习六的第13*题。

四、小结(略)

五、作业

练习六的第6题。

倒数的认识 篇六

教学目标

1.理解和掌握倒数的意义。

2.能正确的求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点

认识倒数并掌握求倒数的方法

教学难点

小数与整数求倒数的方法

教学过程

一、基本训练

(一)口算

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

(一)乘积是1的两个数存在着怎样的倒数关系呢?

请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数。

和 存在怎样的倒数关系呢?2和 呢?

(二)深化理解

教师提问

1.什么是互为倒数?

2.怎样理解这句话?(举例说明)

( 的倒数是 , 的倒数是 ,……不能说 是倒数,要说它是谁的倒数。)

3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).

(三)求一个数的倒数

1.例:写出 、 的倒数

学生试做讨论后,教师将过程板书如下:

所以 的倒数是 , 的倒数是 .

(能不能写成 ,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

2.深化

你会求小数的倒数吗?(学生试做)

三、训练、深化

(一)下面哪两个数互为倒数

(演示课件:1)

(二)求出下面各数的倒数

(演示课件:2)

(三)判断

1.真分数的倒数都是假分数。( )

2.假分数的倒数都小于1.( )

3.0没有倒数。( )

(四)提高

如果末尾加上=1怎么填?

如果末尾加上=0怎么填?

如果末尾加上=2怎么填?

四、课堂小结

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

五、课后作业

(一)下面哪两个数互为倒数?

8

(二)写出下面各数的倒数。

3 1

六、板书设计

教学设计点评

这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。

教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。

练习中,通过“教、扶、放”使讲练有机结合,既加强了双基,又开发了智力。

六年级上册数学《倒数的认识》教案 篇七

教学内容

倒数的认识

教学目标

通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

教学重难点

教学重点

理解倒数的意义,学会求倒数的方法。

教学难点

发现倒数的一些特征。

教具准备

课件

设计意图

教学过程

特色设计

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆———杏土———干吞———吴

按照上面的规律填数

——()——()——()

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

探究讨论,理解倒数的意义。

课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。

你是怎样理解互为倒数的`呢?能举例吗?

深化理解。

乘积是1的两个数存在着怎样的倒数关系呢?

互为倒数的两个数有什么特点?

想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

运用概念。

讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2两个分数的倒数。

学生试做讨论后,教师将过程。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

完成教材的“做一做”

完成教材练习六的第1-5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识?

六年级上册数学《倒数的认识》教案 篇八

[教学内容]:

倒数的认识

[教材简析]

学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。

[学情简析]

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。

[教学目标]

1.在举例、观察、比较、分类、归纳的'过程中帮助学生理解倒数的意义。

2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。

3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。

[教学重点]

倒数的意义与求法。

[教学难点]理解“互为”的意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。

[教学过程]

一、复习旧知,作好铺垫

1、创设情景激趣

师:请同学们仔细观察,(课件演示风景图片)

师问:你发现图画上的景物有什么特点?

生:这些图画都倒过来了,出现了倒影。

师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)

师:你们发现汉字的特点了吗?

生:这些汉字上下交换位置以后,都成了新的汉字。

师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?

板书:倒数

[设计意图:学生已经学过分数的乘法,会计算分数乘整数、分数乘分数,因此,在课始,让学生通过完成练习十的第1题,既可以复习分数乘法,也为引出倒数的概念和为求一个数的倒数做好准备。]

二、合作探究,揭示倒数的意义。

1.学生交流自己写的乘积是1的两个数

(估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:

师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)

[设计意图:通过学生自己举例两个乘积是1的不同的数,引出“倒数”的概念--乘积是1的两个数互为倒数,知道了倒数的概念,学生一定会产生“倒数”究竟是些什么样的数,怎么求一个数的倒数等疑问。学生有了疑问,才会有探索的动力,使枯燥的求倒数的方法成为学生内在的需要而主动地进行研究。]

三、观察比较,探讨求倒数的方法。

探讨研究黑板上板书的几组数。

倒数的认识 篇九

3、倒数的认识教学目标:1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。教学重点: 理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法教学过程:一、导入1、口算:(1) ×        ×       6×        ×40(2) × × 3× ×802、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识二、新授1、教学倒数的意义。(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。(2)学生汇报研究的结果:乘积是1的两个数互为倒数。(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)2、教学求倒数的方法。(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。 6= 3、教学特例,深入理解(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)3、巩固练习:课本24页“做一做”(1)学生独立解答,教师巡视。(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。三、练习1、练习六第2题:同桌互说倒数。2、辨析练习:练习六第3题“判断题”。3、开放性训练。×(  )=(  )× =(  )×(  )四、总结你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?教学追记:倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

人教版小学六年级上册数学《倒数的认识》教案 篇十

一、 教学内容:九年义务教育六年制第九册第二单元《倒数的认识》

二、 教材分析:

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、 教学目标:1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

四、 教学重点:理解倒数的意义,掌握求倒数的方法。

五、 教学难点:熟练写出一个数的倒数。

六、  教学过程:

(一)、 谈话

1.交流

师: 我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么联系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存联系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存联系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入 今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。

(二)、学习新知

对数游戏

1.学习倒数的意义

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。

师:4是3的4/3,

生:3是4的 3/4

师:7是15的7/15; 生:15是7的15/7。

……

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数)   出示课题:倒数的认识

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例

评析:回答问题

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)

练习

(!)出示卡片  (六位同学举着卡片依次站在黑板前)

7/9 11/4 1/50 8 6/5 99

(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

3教学求一个数倒数的方法

出示例题:找出下列各数的倒数

2/3 7/4 1/5 9 1/7/8 0.4

小组讨论 指名板演

提问:1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

2.你是怎么找出7/4的倒数的?

……

提问: 我们怎样才能很快地找到一个数的倒数?为什么?

4.练习 请剩下的没有找到朋友的同学继续找倒数

5.讨论:1的倒数是谁?0的倒数呢?

生:1的倒数是1

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

6.完善求一个数的倒数的方法

三、 巩固练习

(一)填空

1.因为5/3*3/5=1,所以和互为;

2.因为15*1/15=1,所以和互为 ;

3.4/7与互为倒数;

4.的倒数是6/11

5.的倒数是2

6.1/8的倒数是

7.1/2/7的倒数是

8.0.3的倒数是

(二)判断

1.得数是1的两个数互为 倒数。

2.互为倒数的两个数乘积必定是1。

3. 1的倒数是1,所以0的倒数是0 。

4.分数的倒数都大于1。

(四)思考

4/5*=*8

四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

五、 布置作业

倒数的认识 篇十一

教学内容:

教材第24页的内容及练习六的第3、4题

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

教学难点:

掌握求倒数的方法

教学过程:

一、创设情景导入

老师:请同学们仔细观察。

(课件演示风景图片)

提问:你发现图画上的景物有什么特点?

(这些图画都倒过来了,出现了倒影。)

老师:是啊,这些图片有了倒影,显得更加漂亮了。

在我国的文字里,也有很有趣的汉字,让我们一起找找看。

(课件演示:吴、杏)

老师:你们发现汉字的特点了吗?

(这些汉字上下交换位置以后,都成了新的汉字。)(吞、呆)

2、今天我们一起来研究“倒数”,看看他们有什么秘密?一个数是不是把它倒过来就是它的倒数呢?

出示课题:倒数的认识

二、教学实施

1、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)全班交流,讨论“两个数”和“互为倒数”什么意思?教师可引导:语文中的“高”和“矮”是反义词,能不能说“高”是反义词?“我和你们是好朋友”能说成“我是好朋友”吗?数学中我们还学了哪些相互依存的概念?

(4)互为倒数的两个数有什么特点?

(两个数的分子、分母正好颠倒了位置)

2、教学求倒数的方法。

(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

6= 的倒数是

3、教学特例,深入理解?

(1)1有没有倒数?怎么理解?

(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?

(因为0与任何数相乘都不等于1,所以0没有倒数)

4、巩固练习:课本24页“做一做”

(1)学生独立解答,教师巡视。

(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

三、练习

1、练习六第2题:同桌互说倒数。

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

×(  )=(  )× =(  )×(  )

四、作业

做练习六的第1、4题。

五、课堂小结

学完本节课,我们知道了乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。

倒数的认识 篇十二

任阳 顾雪刚

一、教学内容:九年义务教育六年制第九册第二单元

二、教材分析:

是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、教学目标:1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

四、教学重点:理解倒数的意义,掌握求倒数的方法。

五、教学难点:熟练写出一个数的倒数。

六、教学过程:

(一)、 谈话

1.交流

师: 我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

(二)、学习新知

对数游戏

1.学习倒数的意义

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。

师:4是3的4/3,

生:3是4的 3/4

师:7是15的7/15; 生:15是7的15/7。

……

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例

评析:回答问题

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)

练习

(!)出示卡片 (六位同学举着卡片依次站在黑板前)

7/9 11/4 1/50 8 6/5 99

(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

3教学求一个数倒数的方法

出示例题:找出下列各数的倒数

2/3 7/4 1/5 9 1/7/8 0.4

小组讨论 指名板演

提问:1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

2.你是怎么找出7/4的倒数的?

……

提问: 我们怎样才能很快地找到一个数的倒数?为什么?

4.练习 请剩下的没有找到朋友的同学继续找倒数

5.讨论:1的倒数是谁?0的倒数呢?

生:1的倒数是1

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

6.完善求一个数的倒数的方法

三、 巩固练习

(一)填空

1.因为5/3*3/5=1,所以和互为;

2.因为15*1/15=1,所以和互为 ;

3.4/7与互为倒数;

4.的倒数是6/11

5.的倒数是2

6.1/8的倒数是

7.1/2/7的倒数是

8.0.3的倒数是

(二)判断

1.得数是1的两个数互为 倒数。

2.互为倒数的两个数乘积一定是1。

3. 1的倒数是1,所以0的倒数是0 。

4.分数的倒数都大于1。

(四)思考

4/5*=*8

四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

五、 布置作业

简评:

一、自主学习中让学生勇于创新

新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

二、在游戏活动中实现新知的推进

游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

六年级上册数学《倒数的认识》教案 篇十三

整体感知

倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数。待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的。

教学内容:

教材23页的内容以及练习六1至6题。

素质教育目标

(一)知识教学点

1.通过学生观察,分析,比较,理解倒数的意义。

2.用列举的方法,发现规律,使学生掌握求倒数的方法。

(二)能力训练点

培养学生阅读能力,以及抽象概括能力,能准确地写出一定范围的各个数的倒数。

(三)德育渗透点

通过倒数的学习,同时渗透辩证唯物主义观点,倒数间的各个数都是相互依存,不能孤立存在。

教学重点:

理解倒数的意义和怎样求倒数。

教学难点:

求倒数方法的叙述。

教学步骤

一,铺垫孕伏

1.口算:

2.填空:

二,探究新知

(一)教学倒数的意义:

1.揭示课题:今天这节课我们学习一个知识倒数。究竟什么是倒数,怎样求倒数呢 我们一起探讨。教师板书:倒数的认识。

2.观察算式:

(2)计算结果,发现共同点:每个算式中两个数相乘的积是1.

(3)互相讨论:通过几组算式及结果你有什么新发现 引导学生说出:每组中每个分数分子,分母调换了位置,相乘的结果都是1.

3.教师概括并板书:乘积是1的两个数叫做互为倒数。

(1)互相议论:两个数指什么数 互为倒数是什么意思

引导说出:两个数指两个分数或一个整数和一个分数,互为倒数是说一个数是另一个数的倒数,不能说某一个数是倒数。

(3)学生举例:

①每人举出3组倒数的例子,并说明谁是谁的倒数

②同桌互相举例(每人2组),并用倒数的定义来检验。

4,教师小结:通过分析你明白了什么 倒数是指两个数而说,互为倒数是指一个数不能称倒数,必须是一个数是另一个数的倒数。

5.反馈练习:

(1)判断:

①倒数是一个数( )

(二)教学求倒数的方法:

1.学生举例:谁能举出一组互为倒数的两个分数。

2.观察发现:互为倒数的一组数分子,分母有什么特点

引导学生找出互为倒数的两个数的分子,分母位置是互换的。

3.谈想法:设想一下怎样可以找到一个数的'倒数呢

4.讲解例题:

(2)根据倒数的意义,自己找出求倒数的方法。使学生知道:只要把

(3)师生共同发现:求倒数的方法只要把这个数的分子,分母调换位置即可。

(4)表达方式并板书:

5.自然数怎样求倒数

(1)自己任意举出一个自然数,看有没有倒数 并追问:你是怎么想的 引导学生说出:自然数可以看成分母是1的分数,也可以把分子,分母调换位置。

(2)归纳求自然数倒数的方法,引导学生说出,一个自然数的倒数就是以这个自然数作分母,以1作分子的分数。

6.总结方法

(1)学生试述,互相讨论,看谁能够准确表达求倒数的方法。

(2)准确归纳并板书,求一个数( )的倒数,只要把这个数的分子,分母调换位置。

(3)讨论:是不是所有数都有倒数 为什么

引导学生说出:0没有倒数,因为0可以作分子,但调换位置后变为分母,分母不能是0,所以0没有倒数。

(4)教师板书:(0除外)

7.阅读课本中倒数意义和求倒数的方法。

三,巩固发展

1.判断下列说法是否正确 错的改正。

(1)任何数都有倒数。

(2) c和d互为倒数,所以cd=1.

四,全课小结

通过这节课的学习,你知道了什么 学会了什么 引导学生说出乘积是1的两个数叫做互为倒数,必须是互为倒数,以及求倒数的方法。五,布置作业 练习4,5,6题做在作业本上。六,板书设计

倒数的认识

乘积是1的两个数叫做互为倒数

求一个数(0除外)的倒数,只要把这个数的分子,分母调换位置。

人教版小学六年级上册数学《倒数的认识》教案 篇十四

一、说教材

《倒数的认识》是人教版小学数学六年级上册的内容。它是在学习完分数乘法之后的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法归结为乘这个数的倒数。教材首先出示乘积是1的分数乘法,从而引出分数的含义,并举例说明倒数的特点。例1教学求一个数的倒数的方法,然后巩固练习。

从教材的内容来看,比较简单。根据小学数学学科建议,教师除了参阅教学参考书外,还应该参阅不同时期、不同版本的教材。我参照了北师大版和老人教版的内容,对本课内容进行了适当的添加,增加的内容是如何求小数、带分数的倒数。

二、说教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:理解倒数的意义,会求不同种类数的倒数。

教学难点:熟练正确的求小数、带分数的倒数,发现不同种类数的倒数的一些特征

三、说教法

基于教材内容比较单调,那么只有在教法上体现新、奇、特才能激发学生的学习兴趣,才能让学生想学,要学。首先我采用以学生自主学习为主,然后通过讨论归纳推理总结的方法。其次我将在教学中始终扮演一个引导者,引导学生从事数学活动和交流,引导学生去发现问题,讨论问题,解决问题,帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。

四、说学法

学生是课堂的主人,如何体现学生的主人意识,我想在数学课堂教学中,学生应始终在自学中发现问题,在合作中探讨问题,在交流中解决问题。在这一系列的合作中进行恰当的学习活动,有时也能产生思想的碰撞、人格的升华……这样才能体现学生在数学课堂上的主人意识。

五、说教学思路

本课主要围绕“课前自学——课中反馈——师生探讨——巩固练习、课末小结”五个环节进行。

1、课前自学,初步感知。通过我提前出示的预习提纲进行预习之后,同学们对倒数的意义有了初步的认识,对如何求真分数和整数的倒数有了一定的了解。

2、课中反馈,探究发现。让每一个学生写几个等于1的算式,并且小组合作进行分类,分类时大部分学生可能都会以加、减、乘、除来分类,(也有可能会出现其它情况的分类方法)然后让学生找出比较有特色的一类,当学生找出乘法算式等于1的这一类的比较有特色时,要及时让学生说出它们的特色体现在哪里,再让学生写出几个和这些算式类似的算式,根据特点进一步理解倒数的意义。

3、加强合作,深入探讨。以小组为单位,找出还有哪些数有倒数,怎样来求这些数的倒数。这一环节主要解决的问题是怎样求整数、带分数、小数的倒数,要让学生自己总结出求带分数、小数的倒数必须要先变形,再换位。在探讨中,如有学生提出1和0的倒数,那么要作为重点进行研究,总结出:1的倒数是1,0没有倒数。如没有学生提出,教师可稍加提示,比如:有没有哪些数的倒数是它本身呢?是不是所有的数都有倒数呢?

4、加强练习,巩固提高。本节课的练习形式多样化,采用填空、判断说理、同桌你报我说、独立求解、开放练习等形式。主要有合作练习和独立练习两种形式,在练习中碰到的问题及时解决。

5、课堂小结,谈谈感受。让学生谈谈上了这堂课的感受,这堂课最让你感到高兴的是什么?最让你值得自豪的是什么?你有哪些不满意的地方?启发学生说出自己的真实感受,这既是课堂小结,同时也注重了对学生的人文培养。