1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。以下这7篇《解一元二次方程》教学设计是来自于快回答的一元二次方程的范文范本,欢迎参考阅读。
元二次方程的应用 篇一
第一课时
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
第 1 2 页
元二次方程的相关教案 篇二
教学内容:
人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标
(一)知识目标
1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标
1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观
通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点
配方法解一元二次方程的一般步骤
三、教学难点
具体用配方法的一般步骤解一元二次方程。
四、知识考点
运用配方法解一元二次方程。
五、教学过程
(一)复习引入
1、复习:
解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:
二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究
通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注
意力,引发学生思考。
问题1:
一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的`讲解过程具体的解答出来,
具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2
列出方程:60x2=1500
x2=25
x=±5
因为x为棱长不能为负值,所以x=5
即:正方体的棱长为5dm。
1、用直接开平方法解一元二次方程
(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:
要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?
问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。
具体解题步骤:
解:设场地宽x m,长(x +6)m。
列方程: x(x +6)=16
即: x2+6x-16=0
x2+6x=16
x2+6x+9=16+9
(1)有实根(2)有两正根(3)一正一负
变式题:m为何实数值时,关于x的方程x2?mx?(3?m)?0有两个大于1的根。
例2. 若8x4+8(a-2)x2-a+5>0对于任意实数x均成立,求实数a的取值范围。
例3.关于x的方程ax?2x?1?0至少有一个负根,求实数m的取值范围。
课堂小练习:
【布置作业】
省略
元二次方程的应用 篇三
第一课时
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
解法(三) 设较小的奇数为,则另一个奇数为。
据题意,得
整理后,得
解得,,或。
当时,。
当时,。
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3.选出三种方法中最简单的一种。
练习1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。
例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数十位数字个位数字。
三位数百位数字十位数字个位数字。
解:设个位数字为x,则十位数字为,这个两位数是。
据题意,得,
整理,得,
解这个方程,得(不合题意,舍去)
当时,
答:这个两位数是24。
以上分析,解答,教师引导,板书,学生回答,体会,评价。
注意:在求得解之后,要进行实际题意的检验。
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
教材P42A 1、2
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题。设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个。
元二次方程的应用 篇四
12.6 一元二次方程的应用(二)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。
2.教学难点:找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?
解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 当x=13时,15-2x=-11(不合题意,舍去。)
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。
练习1.章节前引例。
学生笔答、板书、评价。
练习2.教材P.42中4.
学生笔答、板书、评价。
注意:全面积=各部分面积之和。
剩余面积=原面积-截取面积。
例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮。
教师引导,学生板书,笔答,评价。
(四)总结、扩展
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。
四、布置作业
教材P.42中A3、6、7.
教材P.41中3.4
五、板书设计
12.6 一元二次方程的应用(二)
例1.略
例2.略
解:设………解:…………
……………………
12.6 一元二次方程的应用(二)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。
2.教学难点:找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?
解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 当x=13时,15-2x=-11(不合题意,舍去。)
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。
练习1.章节前引例。
学生笔答、板书、评价。
练习2.教材P.42中4.
学生笔答、板书、评价。
注意:全面积=各部分面积之和。
剩余面积=原面积-截取面积。
例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮。
教师引导,学生板书,笔答,评价。
(四)总结、扩展
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。
四、布置作业
教材P.42中A3、6、7.
教材P.41中3.4
五、板书设计
12.6 一元二次方程的应用(二)
例1.略
例2.略
解:设………解:…………
……………………
元二次方程的应用 篇五
12.6 一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点:有关增长率之间的数量关系。下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量。
(2)单位时间增产量=原产量×增长率。
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合题意,舍去).
取x=0.2=20%.
教师引导,点拨、板书,学生回答。
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系。
(3)用直接开平方法做简单,不要将括号打开。
练习1.教材P.42中5.
学生分析题意,板书,笔答,评价。
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程。
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数。
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨。引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力。
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。
引导学生对比“增长”、“下降”的区别。如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程。培养学生用数学的意识以及渗透转化和方程的思想方法。
2.在解方程时,注意巧算;注意方程两根的取舍问题。
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率。3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程。
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
元二次方程 篇六
[课 题]§12.1一元二次方程[教学目的] 使学生了解整式方程、一元二次方程的意义;使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学重点] 使学生知道并能认识一元二次方程的一般形式,会把一元二次方程化成一般形式。[教学难点] 使学生掌握什么是一元二次方程的二次项和系数、一次项和系数以及常数项,[教学关键] 使学生掌握在指出一元二次方程的二次项系数、一次项系数和常数项时,一定要包括它们的符号。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1[教学过程][复习提问]例方程解应用题的一般步骤是什么?[讲解新课]引例可由教师提出并分析其中的数量关系,设出未知数,列出代数式,并根据等量关系列出方程:(80-2x)(60-2x)=1500。(这其中应重点复习列方程解应用题的方法、步骤,或讲解或提问应视具体情况而定)。提问:如何将上述方程整理?整理后,得:x2-70x+825=0。这里不必多讲,只指出:这个方程(什么方程?这里不谈)与我们已经学过的一元一次方程不同,我们学了这一章,就可以解这个方程,从而解决上述问题。接着书写教科书第4页的问题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?引导学生分析题意,设未知数,列出代数式,找出相等关系,列出方程:x(x+5)=150。去括号,得: x2+5 x=150。现在来观察这个方程:它的两边都是关于未知数的整式,指出“这样的方程叫做整式方程。”就这一点来说它与一元一次方程没有什么区别,因而,一元一次方程也是整式方程,但一元一次方程未知数的次数是1,而上列方程未知数的最高次数是2,所以,只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。(这样与一元一次方程对比着讲,既使整式方程的内含扩大,以加深学生的印象,也可使学生深刻了解一元二次方程的意义。)下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?1、3x+2=5x-3;(2x=5)2、x2=4;3、(x-1)(x-2)=x2+8;(3x=-6)4、(x+3)(3x-4)=(x+2)2;(2x2+x-16=0)(上述方程都是整式方程。其中1、3是一元一次方程,2、4是一元二次方程。)上列方程中的4,两边展开,得3x2+5x-12=x2+4x+4移项,得 2x2+x-16=0事实上,方程x2+5 x=150移项,得 x2+5 x-150=0这就是说,任何一个关于x的一元二次方程,经过整理,都可以化成下面的形式: ax2+bx+c=0(a≠0)。这种形式叫做一元二次方程的一般形式。这里应强调指出,方程 ax2+bx+c=0只有当a≠0时,才叫一元二次方程。如果a=0,b≠0,就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。随后指出,在方程中,ax2,bx,c各项的名称,并举例说明。(ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。)例1 把方程3x(x-1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。解:去括号,得 3x2-3 x=2x+4+8移项,合并同类项,得 x2-5 x-12=0二次项系数是3;一次项系数是-5;常数项是-12。[课堂练习]教科书第5页练习第1,2题。[课堂小结]通过本节课的学习,我们知道了什么是整式方程,什么叫做一元二次方程和一元二次方程的一般形式:ax2+bx+c=0(a≠0)。在这里我们要特别注意a≠0这个条件。同时我们还学习了一元二次方程化成一般形式后,什么是二次项系数,什么是一次项系数,什么是常数项,在指出这三项内容时,要特别注意它们的符号。[课外作业]复习教科书第4,5页的内容,预习教科第6页上的内容。[板书设计]课题:例题:辅助板书:[课后记]
通过本节课的学习,大部分学生已掌握了什么是整式方程,什么是一元二次方程的概念,对今后学习一元二次方程的解法打下了良好的基础。
元二次方程的相关教案 篇七
【教学目标】
知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.
过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.
情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
【教学重点】
一元二次方程的概念。
【教学难点】
如何把实际问题转化为数学方程。
【教学过程】
一、情景导入,初步认知
问题1:已知一矩形的长为200c,宽150c.在它的中间挖一个圆,使剩余部分的面积为原矩形面积的34,求挖去的圆的半径xc应满足的`方程。(π取3)问题2:据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆,求该市两年来汽车拥有量的年平均增长率x应满足的方程。你能列出相应的方程吗?
【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.
二、思考探究,获取新知
1.对于问题1:找等量关系:矩形的面积—圆的面积=矩形的面积×3/4
列出方程:200×150-3x2=200×150×3/4 ①
对于问题2:
等量关系:两年后的汽车拥有量=前年的汽车拥有量×(1+年平均增长率)2
列出方程:75(1+x)2=1082 ②
2.能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:
①化简,整理得x2-2500=0 ③
②化简,整理得25x2+50x-11=0 ④
3.讨论:方程③、④中的未知数的个数和次数各是多少?
【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2次。
【归纳结论】如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是常数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项。
4.让学生指出方程③,④中的二次项系数、一次项系数和常数项。
【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。
三、运用新知,深化理解
1.见教材P27例题。
2.下列方程是一元二次方程的有。
【答案】 (5)
3.已知(+3)x2-3x-1=0是一元二方程,则的取值范围是_____.
分析 :一元二次方程二次项的系数不等于零。故≠-3.
【答案】 ≠-3
4.把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项。
解 :原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).
5.关于x方程x2-3x=x2-x+2是一元二次方程,应满足什么条件?
分析 :先把这个方程变为一般形式,只要二次项的系数不为0即可。
解 :由x2-3x=x2-x+2得到(-1)x2+(-3)x-2=0,所以-1≠0,
即≠1.所以关于x的方程x2-3x=x2-x+2是一元二次方程,应满足≠1.
6.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是。
分析: 一元二次方程一般形式是ax2+bx+c=0(a≠0),对照一般形式可先去括号,再移项,合并同类项,得2x2-x-7=0.
【答案】 2x2-x-7=0
7.把方程-5x2+6x+3=0的二次项系数化为1,方程可变为( )
A.x2+6/5x+3/5=0 B.x2-6x-3=0
C.x2-6/5x-3/5=0 D.x2-6/5x+3/5=0
【答案】 C
注意方程两边除以-5,另两项的符号同时发生变化。
8.已知方程(+2)x2+(+1)x-=0,当满足______时,它是一元一次方程;当满足______时,它是二元一次方程。
分析: 当+2=0,=-2时,方程是一元一次方程;当+2≠0,≠-2时,方程是二元一次方程。
【答案】 =-2≠-2
9.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,则列出方程为____________
【答案】 1185(1-x)2=580
10.当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?
解:当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。
【教学说明】这组练习目的在于巩固学生对一元二次方程定义中几个特征的理解。进一步巩固学生对一元二次方程的基本概念.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结。教师作以补充。
【课后作业】布置作业:教材“习题2.1”中第1、2、6题。
【学反思】
本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重重难点的体现。本节课内容对于学生整个中学阶段的数学学习有着重大的意义,能否学好关系到日后学习的成败,因此必须要让学生吃透内容并且要真正能消化。
他山之石,可以攻玉。上面的7篇《解一元二次方程》教学设计是由快回答精心整理的一元二次方程范文范本,感谢您的阅读与参考。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。