1. 主页 > 知识大全 >

初一下册数学重要知识点总结(优秀9篇)8-16-17

作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?问渠那得清如许,为有源头活水来,本文是编辑首席帮家人们整编的9篇初一下册数学重要知识点总结,欢迎阅读,希望能够帮助到大家。

初中数学必考知识点 篇一

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数。

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;

②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。

③有理数的绝对值都是非负数。

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

①当a是正有理数时,a的绝对值是它本身a;

②当a是负有理数时,a的绝对值是它的相反数﹣a;

③当a是零时,a的绝对值是零。

即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较

1.有理数的大小比较

比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:

①正数都大于0;

②负数都小于0;

③正数大于一切负数;

④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:

(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数。两个负数比较大小,绝对值大的反而小。

(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数。

(3)作差比较:

若a﹣b>0,则a>b;

若a﹣b<0,则a<b;< p="">

若a﹣b=0,则a=b.

5.有理数的减法

有理数减法法则

减去一个数,等于加上这个数的相反数。即:a﹣b=a+(﹣b)

方法指引:

①在进行减法运算时,首先弄清减数的符号;

②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);

注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘,都得0。

(3)多个有理数相乘的法则:

①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

②几个数相乘,有一个因数为0,积就为0。

(4)方法指引

①运用乘法法则,先确定符号,再把绝对值相乘。

②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单。

7.有理数的混合运算

1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:

(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

8.科学记数法—表示较大的数

1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

2.规律方法总结

①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号。

9.代数式求值

(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

(2)代数式的求值:求代数式的值可以直接代入、计算。如果给出的代数式可以化简,要先化简再求值。

题型简单总结以下三种:

①已知条件不化简,所给代数式化简;

②已知条件化简,所给代数式不化简;

③已知条件和所给代数式都要化简。

10.规律型:图形的变化类

首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

11.等式的性质

1.等式的性质

性质1 等式两边加同一个数(或式子)结果仍得等式;

性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

2.利用等式的性质解方程

利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化。

应用时要注意把握两关:

①怎样变形;

②依据哪一条,变形时只有做到步步有据,才能保证是正确的。

12.一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13.解一元一次方程

1.解一元一次方程的一般步骤

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14.一元一次方程的应用

1.一元一次方程解应用题的类型

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路

首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤

(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系。

(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数。

(3)列:根据等量关系列出方程。

(4)解:解方程,求得未知数的值。

(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句。

15.正方体相对两个面上的文字

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象。

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键。

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面。

16.直线、射线、线段

(1)直线、射线、线段的表示方法

①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边。

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:

①点经过直线,说明点在直线上;

②点不经过直线,说明点在直线外。

17.两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形。线段的长度才是两点的距离。可以说画线段,但不能说画距离。

18.角的概念

(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。

(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示。其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角。角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。

(4)角的度量:度、分、秒是常用的角的度量单位。1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分线的定义

从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。

①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。

②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的运算

(1)度、分、秒的加减运算。

在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。

(2)度、分、秒的乘除运算

①乘法:度、分、秒分别相乘,结果逢60要进位。

②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。

21.由三视图判断几何体

(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。

(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。

初一下册数学知识点总结 篇二

相交线与平行线

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:

同位角F(在两条直线的同一旁,第三条直线的同一侧)

内错角Z(在两条直线内部,位于第三条直线两侧)

同旁内角U(在两条直线内部,位于第三条直线同侧)

4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足

6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c

10、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

七年级数学下册知识点总结5

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

5.1.2

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

5.2.2直线平行的条件

两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:

方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5.3平行线的性质

平行线具有性质:

性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。

5.4平移

⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各

组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

第六章《平面直角坐标系》

6.1平面直角坐标系

6.1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。

6.1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

6.2坐标方法的简单应用

6.2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

6.2.2用坐标表示平移

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章《三角形》

7.1与三角形有关的线段7.1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。

7.1.2三角形的高、中线和角平分线

7.1.3三角形的稳定性

三角形具有稳定性。

7.2与三角形有关的角

7.2.1三角形的内角

三角形的内角和等于180。

7.2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。

7.3多边形及其内角和

7.3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

多边形的内角和n边形的内角和公式:180(n-2)

多边形的外角和等于360。

1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

☆2判断三条线段能否组成三角形。

①a+b>c(a b为最短的两条线段)②a-b

☆3第三边取值范围:a-b < c若两边分别为a,b则周长的取值范围是2a

如两边分别为5和7则周长的取值范围是14

☆5三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。

6“三线”特征:

☆三角形的中线

①平分底边。

②分得两三角形面积相等并等于原三角形面积的一半。

③分得两三角形的周长差等于邻边差。

☆7直角三角形:

①两锐角互余。

② 30度所对的直角边是斜边的一半。

③三条高交于三角形的一个顶点。

④ ∠A=1/2∠B=1/3∠C

⑤ ∠A: ∠B: ∠C=1:2:3

⑥ ∠A=∠B+∠C ⑦ ∠A: ∠B: ∠C=1:1:2 ⑧ ∠A=90-∠B

☆8相关命题:

→1三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

→2锐角三角形中的锐角的取值范围是60≤X<90 。锐角不小于60度。

→3任意一个三角形两角平分线的夹角=90+第三角的一半。

→4钝角三角形有两条高在外部。

→5全等图形的大小(面积、周长)、形状都相同。

→6面积相等的两个三角形不一定是全等图形。

→7能够完全重合的两个图形是全等图形。

→8三角形具有稳定性。

9三条边分别对应相等的两个三角形全等。

10三个角对应相等的两个三角形不一定全等。

11两个等边三角形不一定全等。

12两角及一边对应相等的两个三角形全等。

13两边及一角对应相等的两个三角形不一定全等。 14两边及它们的夹角对应相等的两个三角形全等。 15两条直角边对应相等的两个直角三角形全等。

16一条斜边和一直角边对应相等的两个三角形全等。

17一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18一角和一边对应相等的两个直角三角形不一定全等。

19有一个角是60的等腰三角形是等边三角形。

初一下册数学知识点汇总 篇三

一、目标与要求

1.解有序数对的应用意义,了解平面上确定点的常用方法。

2.培养学生用数学的意识,激发学生的学习兴趣。

3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的。变化,来判定图形的移动过程。

4.发展学生的形象思维能力,和数形结合的意识。

5.坐标表示平移体现了平面直角坐标系在数学中的应用。

二、重点

掌握坐标变化与图形平移的关系;

有序数对及平面内确定点的方法。

三、难点

利用坐标变化与图形平移的关系解决实际问题;

利用有序数对表示平面内的点。

初一上册数学知识点总结(人教版 篇四

第一章 有理数

1.有理数:

(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数; a>0←→a是正数; a<0←→a是负数;

a≥0←→a是正数或0  a是非负数; a≤ 0←→a是负数或0←→a是非正数。

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 ←→ a+b=0 ←→ a、b互为相反数。

(4)相反数的商为-1。

(5)相反数的绝对值相等

4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(4) |a|是重要的非负数,即|a|≥0;

七年级数学下册知识点总结 篇五

单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n = am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

3、此法则也可以逆用,即:amn =(am)n=(an)m。

积的乘方

1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

三种“幂的运算法则”异同点

1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:

(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n = am÷an(a≠0)。

零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

平方差公式

1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

(a+b)(a-b)的形式,然后看a2与b2是否容易计算。

相交线与平行线

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:

同位角F(在两条直线的同一旁,第三条直线的同一侧)

内错角Z(在两条直线内部,位于第三条直线两侧)

同旁内角U(在两条直线内部,位于第三条直线同侧)

4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足

6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c

10、平行线的判定:

①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________

14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。

命题分为真命题和假命题两种;定理是经过推理证实的真命题。

实数

一、实数的概念及分类

1、实数的分类正有理数有理数零有限小数和无限循环小数

负有理数

正无理数

无理数无限不循环小数

负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3

(3)有特定结构的数,如0.1010010001…等;

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于

零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4.实数与数轴上点的关系:

每一个无理数都可以用数轴上的一个点表示出来,

数轴上的点有些表示有理数,有些表示无理数,

实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、平方根、算数平方根和立方根

1、平方根

(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根。即:如果

a,那么x叫做a的平方根。?x2

(2)开平方的定义:求一个数的平方根的运算,叫做开平方。开平方运算的被开方数必须是非负数才有意义。

3?3的平方等于9,9的平方根是?(3)平方与开平方互为逆运算:

(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;

一个负数没有平方根,即负数不能进行开平方运算

(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;

正数a的负的平方根可用-表示。

a?2(6)x <—> ??x

a是x的平方x的平方是a

x是a的平方根a的平方根是x

2、算术平方根

a,那么这个正数?(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2

x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。

规定:0的算术平方根是0.

。?a (x≥0)中,规定x?也就是,在等式x2

(2)的结果有两种情况:当a是完全平方数时,是一个有限数;

当a不是一个完全平方数时,是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;

当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小

a (x≥0)?(5)x2 <—> ?x

a是x的平方x的平方是a

x是a的算术平方根a的算术平方根是x

《平面直角坐标系》

1平面直角坐标系

1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。

1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

2坐标方法的简单应用

2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

2.2用坐标表示平移

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

《三角形》

1与三角形有关的线段

1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。

1.2三角形的高、中线和角平分线

1.3三角形的稳定性

三角形具有稳定性。

2与三角形有关的角

2.1三角形的内角

三角形的内角和等于180。

2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。

3多边形及其内角和

3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

多边形的内角和n边形的内角和公式:180(n-2)

多边形的外角和等于360。

1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

2判断三条线段能否组成三角形。

①a+b>c(a b为最短的两条线段)②a-b

3第三边取值范围:a-b < c若两边分别为a,b则周长的取值范围是2a

如两边分别为5和7则周长的取值范围是14

4有一个角是60的等腰三角形是等边三角形。

5三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。

6“三线”特征:

☆三角形的中线

①平分底边。

②分得两三角形面积相等并等于原三角形面积的一半。

③分得两三角形的周长差等于邻边差。

7直角三角形:

①两锐角互余。

② 30度所对的直角边是斜边的一半。

③三条高交于三角形的一个顶点。

④ ∠A=1/2∠B=1/3∠C

⑤ ∠A: ∠B: ∠C=1:2:3

⑥ ∠A=∠B+∠C ⑦ ∠A: ∠B: ∠C=1:1:2 ⑧ ∠A=90-∠B

8相关命题:

→1三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

→2锐角三角形中的锐角的取值范围是60≤X<90 。锐角不小于60度。

→3任意一个三角形两角平分线的夹角=90+第三角的一半。

→4钝角三角形有两条高在外部。

→5全等图形的大小(面积、周长)、形状都相同。

→6面积相等的两个三角形不一定是全等图形。

→7能够完全重合的两个图形是全等图形。

→8三角形具有稳定性。

9三条边分别对应相等的两个三角形全等。

10三个角对应相等的两个三角形不一定全等。

11两个等边三角形不一定全等。

12两角及一边对应相等的两个三角形全等。

13两边及一角对应相等的两个三角形不一定全等。

14两边及它们的夹角对应相等的两个三角形全等。

15两条直角边对应相等的两个直角三角形全等。

16一条斜边和一直角边对应相等的两个三角形全等。

17一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18一角和一边对应相等的两个直角三角形不一定全等。

平面图形的认识(二)

一、知识点:

1、“三线八角”

① 如何由线找角:一看线,二看型。

同位角是“F”型;

内错角是“Z”型;

同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:

如果两条直线都和第三条直线平行,那么这两条直线也平行。

简述:平行于同一条直线的两条直线平行。

补充定理:

如果两条直线都和第三条直线垂直,那么这两条直线也平行。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质:

判定定理 性质定理

条件 结论 条件 结论

同位角相等 两直线平行 两直线平行 同位角相等

内错角相等 两直线平行 两直线平行 内错角相等

同旁内角互补 两直线平行 两直线平行 同旁内角互补

4、图形平移的性质:

图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

5、三角形三边之间的关系:

三角形的任意两边之和大于第三边;

三角形的任意两边之差小于第三边。

若三角形的三边分别为a、b、c,

6、三角形中的主要线段:

三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:

三角形的3个内角的和等于180°;

直角三角形的两个锐角互余;

三角形的一个外角等于与它不相邻的两个内角的和;

三角形的一个外角大于与它不相邻的任意一个内角。

8、多边形的内角和:

n边形的内角和等于(n-2)180°;

任意多边形的外角和等于360°。

幂的运算

幂(power)指乘方运算的结果。an指将a自乘n次(n个a相乘)。把an看作乘方的结果,叫做a的n次幂。

对于任意底数a,b,当m,n为正整数时,有

aman=am+n (同底数幂相乘,底数不变,指数相加)

am÷an=am-n (同底数幂相除,底数不变,指数相减)

(am)n=amn (幂的乘方,底数不变,指数相乘)

(ab)n=anan (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)

a0=1(a≠0) (任何不等于0的数的0次幂等于1)

a-n=1/an (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的'倒数)

科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法。

复习知识点:

1.乘方的概念

求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a 叫做底数,n 叫做指数。

2.乘方的性质

(1)负数的奇次幂是负数,负数的偶次幂的正数。

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

整式的乘法与因式分解

一、整式乘除法

单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。ac5bc2=(ab)(c5c2)=abc5+2=abc7 注:运算顺序先乘方,后乘除,最后加减

单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc 注:不重不漏,按照顺序,注意常数项、负号 .本质是乘法分配律。

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn

乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差。 (a+b)(a-b)=a2-b2

完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍。 (a±b)2=a2±2ab+b2

因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式。

因式分解方法:

1、提公因式法。 关键:找出公因式

公因式三部分:①系数(数字)一各项系数最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式。需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项。

注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。

2、公式法。①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2 完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方。

③x3-y3=(x-y)(x2+xy+y2) 立方差公式

3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq

因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止。

弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差

添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证

二元一次方程组

1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns) 。

2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。

3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。

4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。

6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:

(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;

(2)找:找出能够表示题意两个相等关系;

(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;

(4)解:解这个方程组,求出两个未知数的值;

(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。

一元一次不等式

一元一次不等式

重点:不等式的性质和一元一次不等式的解法。

难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。

知识点一:不等式的概念

1. 不等式:

用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式。用“≠”表示不等关系的式子也是不等式。

要点诠释:

(1) 不等号的类型:

① “≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;

(2) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:

由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:

一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。二者的关系是:解集包括解,所有的解组成了解集。

要点诠释:

不等式的解集必须符合两个条件:

(1)解集中的每一个数值都能使不等式成立;

(2)能够使不等式成立的所有的数值都在解集中。

知识点二:不等式的基本性质

基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

符号语言表示为:如果 ,那么 。

基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

符号语言表示为:如果 ,并且 ,那么 (或 )。

基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果 ,并且 ,那么 (或 )

要点诠释:

(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;

(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;

(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;

(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

知识点三:一元一次不等式的概念

只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。

要点诠释:

(1)一元一次不等式的概念可以从以下几方面理解:

①左右两边都是整式(单项式或多项式); ②只含有一个未知数;

③未知数的最高次数为1。

(2)一元一次不等式和一元一次方程可以对比理解。

相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。

知识点四:一元一次不等式的解法

1.解不等式:

求不等式解的过程叫做解不等式。

2.一元一次不等式的解法:

与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.

要点诠释:

(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用

(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。

3.不等式的解集在数轴上表示:

在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。

要点诠释:

在用数轴表示不等式的解集时,要确定边界和方向:

(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左

规律方法指导(包括对本部分主要题型、思想、方法的总结)

1、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)

2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。

3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为 或 的形式,其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为1。这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。

解一元一次不等式的一般步骤及注意事项

变形名称 具体做法 注意事项

去分母 在不等式两边同乘以分母的最小公倍数 (1)不含分母的项不能漏乘

(2)注意分数线有括号作用,去掉分母后,如分子是多项式,要加括号

(3)不等式两边同乘以的数是个负数,不等号方向改变。

去括号 根据题意,由内而外或由外而内去括号均可

(1)运用分配律去括号时,不要漏乘括号内的项

(2)如果括号前是“—”号,去括号时,括号内的各项要变号

移项 把含未知数的项都移到不等式的一边(通常是左边),不含未知数的项移到不等式的另一边 移项(过桥)变号

合并同类项 把不等式两边的同类项分别合并,把不等式化为 或 的形式

合并同类项只是将同类项的系数相加,字母及字母的指数不变。

系数化1 在不等式两边同除以未知数的系数 ,若 且 ,则不等式的解集为 ;若 且 ,则不等式的解集为 ;若 且 ,则不等式的解集为 ;若 且 ,则不等式的解集为 ;

(1)分子、分母不能颠倒

(2)不等号改不改变由系数 的正负性决定。

(3)计算顺序:先算数值后定符号

4、将一元一次不等式的解集在数轴上表示出来,是数学中数形结合思想的重要体现,要注意的是“三定”:一是定边界点,二是定方向,三是定空实。

5、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。

6、常见不等式的基本语言的意义:

(1) ,则x是正数;

(2) ,则x是负数;

(3) ,则x是非正数;

(4) ,则x是非负数;

(5) ,则x大于y;

(6) ,则x小于y;

(7) ,则x不小于y;

(8) ,则x不大于y;

(9) 或 ,则x,y同号;

(10) 或 ,则x,y异号;

(11)x,y都是正数,若 ,则 ;若 ,则 ;

(12)x,y都是负数,若 ,则 ;若 ,则

证明

教学目标:

1.掌握定义、命题、定理、逆命题、互逆命题等概念,知道一个命题是真命 题,它的逆命题不一定是真命题。

2.基本事实是其真实性不加证明的真命题,弄清真命题与定理的区别。

3.会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。

重点:定义、命题、定理、逆命题、互逆命题等概念的理解与运用

难点:会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。

内容:

1.以基本事实:“同位角相等,两直线平行”证明: (1)“内错角相等,两直线平行”、“同旁内角互补,两直线平行”、“平行于同一条直线的两条直线平行”

2.基本事实:“过直线外一点,有且只有一条直线与这条直线平行”

“两直线平行,同位角相等”

证明:

(1)两只相平行,内错角相等

(2)两只相平行,同旁内角互补

(3)三角形内角和定理”

(4)直角三角形的两个锐角互余

(5)有两个锐角互余的三角形是直角三角形

(6)三角形的外角等于与它不相邻的两个外角的和

初一下册数学知识点汇总 篇六

平行线具有性质:

性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的。语句叫做命题。

学好初中数学的方法 篇七

1、打好初中的基础。

数学的学习属于环环相扣,很多初中学习过的基础知识,到了高中还会大量使用,所以升入高中以后,葛艳波建议大家,如果初中数学基础太差,一定要想办法再弥补一下,不然会成为后续数学学习的绊脚石。

2、学习一定要有目标。

试想一下,一个学生学习数学没有一个明确的目标,哪来的学习动力?有了学习目标就有了学习动力,那么学生在课堂上就会精神饱满、热情洋溢,学生会身心健康。没有目标的学生,数学学习过程中完全属于被动式学习,效果很差。尝试给自己制定一些目标,比如下次考试考多少名,大学要考什么大学,每天要完成具体哪些任务,目标越明确、越详细越好。

3、学习要主动,不能被动式学习。

数学差生和优秀学生最大的差别,就是学习是主动还是被动。一定积极主动去参与学习,而不是被老师、作业逼着去学习。

初一下册数学知识点总结 篇八

多项式除以单项式

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

七年级下数学知识点总结 篇九

抛物线的性质:

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P(-b/2a,(4ac-b^2)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

焦半径:

焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè÷

p2,0的距离|PF|=x0+p2.

求抛物线方程的方法:

(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程。

(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式。从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).