说课就是教师口头表述具体课题的教学设想及其理论依据,也就是授课教师在备课的基础上,面对同行或教研人员,讲述自己的教学设计,然后由听者评说,达到互相交流,共同提高的目的的一种教学研究和师资培训的活动。以下是快回答给大家分享的12篇高中数学说课比赛一等奖说课稿,希望能够让您对于高中数学说课稿的写作有一定的思路。
高中数学说课稿 篇一
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中"平面向量的线性运算"的第一节课。本节资料有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在"平面向量"及"空间向量"中有很重要的地位。
二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,明白向量能够自由移动,这是学习本节资料的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可经过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、教学目的:
1、经过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。
3、经过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的本事。
四、教学重、难点
重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,可是三角形法则适用范围更加广泛,且简便易行,所以是详讲资料,平行四边形法则在本课中所占份量略少于三角形法则。
难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。
五、教学方法
本节采用以下教学方法:
1、类比:由数的加法运算类比向量的加法运算。
2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;经过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。
3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。
六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。
2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从比较中看出两者的不一样,效果较好。
3、归纳思想:主要体此刻以下三个环节
①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都能够选用。
②由共线向量的。加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。
③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。
七、教学过程:
1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情景,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。
2、引入新课:
(1)平行四边形法则的引入。
学生在物理学中虽然接触过位移的合成,可是并没有构成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,可是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一齐才能用平行四边形法则,不在一齐不能用。这时要经过讲解例1,使学生认识到能够经过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。
设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易理解,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的"起点相同"这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一齐时,须把起点移到一齐,至此才能使学生完成对平行四边形法则理解真正到位。
(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入。
所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还能够利用三角形法则来做。
这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都能够用。
设计意图:由平行四边形法则的图形引入三角形法则,能够很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,并且衔接自然,能够使学生比较地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。
(3)共线向量的加法
方向相同的两个向量相加,对学生来说较易完成,"将它们接在一齐,取它们的方向及长度之和,作为和向量的方向与长度。"引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。
方向相反的两个向量相加,对学生来说是个难点,首先从作图上不明白怎样做。可是学生学过有理数加法中的异号两数相加:"异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。"类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由教师引导学生尝试运用三角形法则去做,发现结论正确。
反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则经过以上几个环节的讨论,能够作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。
设计意图:经过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不一样位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,能够化解难点。
(4)向量加法的运算律
①交换律:交换律是利用平行四边形法则的图形,又结合三角
形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。
②结合律:结合律是经过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。
接下来是对应的两个练习,运用交换律与结合律计算向量的和。
设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样能够运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最终一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。
3、小结
先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结资料,使学生印象更深。
(1)平行四边形法则:起点相同,适用于不共线向量的求和。
(2)三角形法则首尾相接,适用于任意多个向量的求和。
(3)运算律
高中数学经典优秀说课稿 篇二
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:
离散型随机变量期望的概念及其实际含义。
难点:
离散型随机变量期望的实际应用。
[理论依据]
本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法B目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
高中数学经典优秀说课稿 篇三
一、本节资料的地位与重要性
"分类计数原理与分步计数原理"是《高中数学》一节独特资料。这一节课与排列、组合的基本概念有着紧密的联系,经过对这一节课的学习,既能够让学生理解、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。
二、关于教学目标的确定
根据两个基本原理的地位和作用,我认为本节课的教学目标是:
(1)使学生正确理解两个基本原理的概念;
(2)使学生能够正确运用两个基本原理分析、解决一些简单问题;
(3)提高分析、解决问题的本事
(4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。
三、关于教学重点、难点的选择和处理
中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点资料。
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,应对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生理解概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。
四、关于教学方法和教学手段的选用
根据本节课的资料及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。
启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。贴合教学论中的自觉性和进取性、巩固性、可理解性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生经过主动思考、动手操作来到达对知识的"发现"和理解,进而完成知识的内化,使书本的知识成为自我的知识。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,能够极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,能够将教师的思路和策略以软件的形式来体现,更好地为教学服务。
五、关于学法的指导
"授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习本事,增强学生的综合素质,从而到达教学的目标。教学中,教师创设疑问,学生想办法解决疑问,经过教师的启发点拨,类比推理,在进取的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,贴合学生认知水平,培养了学习本事。
六、关于教学程序的设计
(一)课题导入
这是本章的第一节课,是起始课,讲起始课时,把这一学科的资料作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下头的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章资料的独特性,从应用的广泛看学习本章资料的重要性。同时板书课题(分类计数原理与分步计数原理)
这样做,能使学生明白本节资料的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。
(二)新课讲授
经过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都能够独立地把从甲地到乙地这件事办好。
紧跟着给出:
引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不一样的走法?
引伸2:若完成一件事,有类办法。在第1类办法中有种不一样方法,在第2类办法中有种不一样的方法,……,在第类办法中有种不一样方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不一样方法?
这个问题的两个引申由渐入深、循序渐进为学生理解分类计数原理做好了准备。
板书分类计数原理资料:
完成一件事,有类办法。在第1类办法中有种不一样方法,在第2类办法中有种不一样的方法,……,在第类办法中有种不一样方法,那么完成这件事共有种不一样的方法。(也称加法原理)
此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理资料,启发总结得下头三点注意:(出示幻灯片)
(1)各分类之间相互独立,都能完成这件事;
(2)根据问题的特点在确定的分类标准下进行分类;
(3)完成这件事的任何一种方法必属于某一类,并且分别属于不一样两类的两种方法都是不一样的方法。
这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。
接下来给出问题2:(出示幻灯片)
由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不一样的走法?
提出问题:问题1与问题2同是研究从甲地到乙地的不一样走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都能够从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。
问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不一样的颜色闪现出六种不一样的走法,让学生列式求出不一样走法数,并列举所有走法。
归纳得出:分步计数原理(板书原理资料)
分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不一样的方法,做第二步有m2种不一样的方法,……,做第n步有mn种不一样的方法。那么,完成这件事共有
N=m1×m2×…×mn
种不一样的方法。
同样趁学生对定理有必须的认识,引导学生分析分步计数原理资料,启发总结得下头三点注意:(出示幻灯片)
(1)各步骤相互依存,仅有各个步骤完成了,这件事才算完成;
(2)根据问题的特点在确定的分步标准下分步;
(3)分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。
(三)应用举例
教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。
例2:由数字0,1,2,3,4能够组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:
(1)每一个三位数是由什么构成的?(三个整数字)
(2)023是一个三位数吗?(百位上不能是0)
(3)组成一个三位数需要怎样做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)
(4)怎样表述?
教师巡视指导、并归纳
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到能够组成的三位整数的个数是N=4×5×5=100.
答:能够组成100个三位整数。
(教师的连续发问、启发、引导,帮忙学生找到正确的解题思路和计算方法,使学生的分析问题本事有所提高。
教师在第二个例题中给出板书示范,能帮忙学生进一步加深对两个基本原理实质的理解,周密的研究,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的构成有着进取的促进作用,也能够为学生后面应用两个基本原理解排列、组合综合题打下基础)
(四)归纳小结
师:什么时候用分类计数原理、什么时候用分步计数原理呢?
生:分类时用分类计数原理,分步时用分步计数原理。
师:应用两个基本原理时需要注意什么呢?
生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。
(五)课堂练习
P222:练习1~4.学生板演第4题
(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)
(六)布置作业
P222:练习5,6,7.
补充题:
1.在所有的'两位数中,个位数字小于十位数字的共有多少个?
(提示:按十位上数字的大小能够分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)
2.某学生填报高考志愿,有m个不一样的志愿可供选择,若只能按第一、二、三志愿依次填写3个不一样的志愿,求该生填写志愿的方式的种数。
(提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)
3.在所有的三位数中,有且仅有两个数字相同的三位数共有多少个?
(提示:能够用下头方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个仅有两个数字相同的三位数)
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不一样的选法?
(提示:由于8+5=13》10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心学习,认真复习,就有可能在高中的战场上考取自我梦想的成绩。
高中数学说课稿 篇四
一、教材分析
1。《指数函数》在教材中的地位、作用和特点
《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2。教学目标、重点和难点
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:
(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;
(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。
(4)教学重点:指数函数的图象和性质。
(5)教学难点:指数函数的图象性质与底数a的关系。
突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法设计
由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:
1。创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2。强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
3。突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。
4。注意数学与生活和实践的联系。数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。
三、学法指导
本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:
1。再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2。领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3。在互相交流和自主探
高中数学说课稿 篇五
课题:棱锥的概念和性质
教材分析
教材的地位和作用
“棱锥”这节教材是《立体几何》的第2.2节它是在学生学习了直线和平面的基础知识,掌握若干基本图形以及棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。 因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。
教学内容
本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。
教学目的
根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目的确定为:
通过棱锥,正棱锥概念的教学,培养学生知识迁移的能力及数学表达能力;
领会应用正棱锥的性质解题的一般方法,初步学会应用性质解决相关问题;
通过对正棱锥中相关元素的相互转化的研究,提高学生的空间想象能力以及空间问题向平面转化的能力;
进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。
教学重点,难点,关键
对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。
教法分析
类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质。
由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。
学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生“动手做,动脑想;严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。
教学流程
课题引入
上一节课我们学习了棱柱的有关知识,当棱柱的上底面缩为一点时,想一想,其底面,侧棱有何变化?
(可将金字塔,帐篷的图片以及不同棱锥的模型依次出示给学生)
将现实生活的实例抽象成数学模型,获得新的几何体――棱锥。(板书课题)
引导启发
请同学们描述一下棱锥的本质特征?(学生观察模型,提示学生可以从底面,侧面的形状特点加以描述)
结论:(1)有一个面是多边形;
(2)其余各面是三角形且有一个公共顶点。
由满足(1)、(2)的面所围成的几何体叫做棱锥。
(设计意图:由观察具体事物,经过积极思维,归纳、抽象出事的本质属性,形成概念,培养学生抽象思维能力,提高学习效果。)
观察图1:依次逐个介绍棱锥各个部分
名称及表示法。表示法:棱锥S-ABCDE
或棱锥S-AC。与棱柱相似,棱锥可以按
底面多边形的边数分为三棱锥,四棱锥、
五棱锥,···,n棱锥。
(设计意图:从简处理棱锥的表示法,
分类等,为后面重点解决正棱锥的性质问
题节省时间。)
由于实际生活中,遇到的往往是一种
特殊的棱锥――正棱锥,它的性质用处较多。
所以下面重点研究正棱锥的概念及性质。
通过对比正棱柱的定义,让学生描述正棱锥。
(拿出各式各样的棱锥模型让学生辨认)
讨论:底面是正多边形的棱锥对吗?联想正棱柱的定义,棱柱补充几点后才是正棱柱?
结论:底面是正多边形,并且顶点在底面射影是底面中心。为什么?
(设计意图:采用观察、联想、类比、猜想、发现的方法引出正棱锥的定义比课本直接给出显得自然,学生好接受)
引导证明
正棱锥的顶点在底面的射影是底面下多边形中心,这是正棱锥的本质特征。它决定了正棱锥的其他性质。下面以正五棱锥为例,请同学们说出其侧棱,各侧面有何性质?(将图2出示给学生)
结论:各棱相等,各侧面是全等的等腰三角形。
为什么?
高中数学说课稿 篇六
一。内容和内容分析
“函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。
二.目标和目标分析
(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断
简单函数的奇偶性。
(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊
到一般的数学思想方法。
(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。
三.教学问题诊断分析
导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。
四.教学支持条件分析
用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。
五.教学过程设计
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:
1.设疑导入、观图激趣:
使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。
2.指导观察、形成概念:
作出函数y=x的图象,并观察这两个函数图象的对称性如何?
借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
函数f(x)的定义域为a,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2
偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。
3.学生探索、发展思维。
接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x)
(3)得出结论
由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。
4.布置作业:
六.目标检测设计
学案上的题型主要包括奇偶性函数的判断及应用
七.教学反思:(从两方面)
1.思成功
一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,
听别人怎样介绍,也学到了知识。
2.思不足
学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用
学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。
语言组织:
在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。
教学环节(的完整):
在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。
以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。
高中数学经典优秀说课稿 篇七
一、说设计理念
《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。
基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。
二、教材分析:
(一)教材的地位和作用
有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。
(二)教学目标
1、联系生活情境了解扇形统计图的特点和作用
2、能读懂扇形统计图,从中获取有效的信息。
3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。
(三)教学重点:
1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。
2、认识折线统计图,了解折线统计图的特点。
(四)教学难点:
1、能从扇形统计图中获得有用信息,并做出合理推断。
2、能根据统计图和数据进行数据变化趋势的分析。
二、学情分析
本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。
三、设计理念和教法分析
1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。
2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。
四、说学法
《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
五、说教学程序
本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。
六、说教学过程
(一)复习引新
1、复习旧知
提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?
2、引入新课
(二)自主探索,学习新知
新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。
第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断。
高中数学说课稿范文 篇八
尊敬的各位教师,大家好,我是()场的()号考生。
今日,我说课的资料是正弦函数的性质。
对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。
一、说教材
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。
二、说学情
合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。
高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能
会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
(二)过程与方法
经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。
(三)情感态度价值观
经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点
(一)教学重点
由正弦函数的图象得到正弦函数的性质。
(二)教学难点
正弦函数的周期性和单调性。
五、说教法和学法
此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的进取性、主动性。
(一)新课导入
首先是导入环节,在这一环节中我将采用复习的导入方法。
我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。
这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。
(二)新知探索
接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。
让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。
学生一边看投影,一边思考如下问题:
(1)正弦函数的定义域是什么
(2)正弦函数的值域是什么
(3)正弦函数的最值情景如何
(4)正弦函数的周期
(5)正弦函数的奇偶性
(6)正弦函数的递增区间
给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。
1.定义域:y=sinx定义域为R
2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]
3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。
4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。
5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。
6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。
在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。
(三)课堂练习
第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。
经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的进取主动的探索中显得更有味道。
(四)小结作业
最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。
在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。
经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。
七、说板书设计
高中数学说课稿 篇九
一、教材分析
1、教材所处的地位和作用
奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。
2、学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维本事正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、
3、教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1、能确定一些简单函数的奇偶性。
2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】
经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。
【情感、态度与价值观】
经过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上到达了预期效果。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。
2、学法
让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、构成概念
在这一环节中共设计了2个探究活动。
探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的。,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,()然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三)学生探索、领会定义
探究3下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1确定下列函数的奇偶性
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。
例1设计意图是归纳出确定奇偶性的步骤:
(1)先求定义域,看是否关于原点对称;
(2)再确定f(-x)=-f(x)还是f(-x)=f(x)。
例2确定下列函数的奇偶性:
例3确定下列函数的奇偶性:
例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?
例4(1)确定函数的奇偶性。
(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。
(五)总结反馈
在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1、3A组第6题。
思考题:课本第39页习题1、3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。
高中数学说课稿 篇十
高中数学第三册(选修)Ⅱ第一章第2节第一课时
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的。思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
五、教学的基本流程设计
高中数学第三册《离散型随机变量的期望》说课教案。rar
高中数学说课稿 第十一篇
一、说教材
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。
二、说学情
合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。
高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能
会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
(二)过程与方法
经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。
(三)情感态度价值观
经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点
(一)教学重点
由正弦函数的图象得到正弦函数的性质。
(二)教学难点
正弦函数的周期性和单调性。
五、说教法和学法
此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入
首先是导入环节,在这一环节中我将采用复习的导入方法。
我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。
这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。
(二)新知探索
接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。
让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。
学生一边看投影,一边思考如下问题:
(1)正弦函数的定义域是什么
(2)正弦函数的值域是什么
(3)正弦函数的'最值情景如何
(4)正弦函数的周期
(5)正弦函数的奇偶性
(6)正弦函数的递增区间
给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。
1.定义域:y=sinx定义域为R
2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]
3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。
4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。
5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。
6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。
在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。
(三)课堂练习
第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。
经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。
(四)小结作业
最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。
在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。
经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。
高中数学说课稿 第十二篇
一、教材分析
1、教材所处的地位和作用
奇偶性是人教a版第一章集合与函数概念的第3节函数的基本性质的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。
2、学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、
3、教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1、能判断一些简单函数的奇偶性。
2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】
经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】
通过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上达到了预期效果。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。
2、学法
让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、形成概念
在这一环节中共设计了2个探究活动。
探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, 然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三) 学生探索、领会定义
探究3 下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1判断下列函数的奇偶性
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。
例1设计意图是归纳出判断奇偶性的步骤:
(1) 先求定义域,看是否关于原点对称;
(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。
例2 判断下列函数的奇偶性:
例3 判断下列函数的奇偶性:
例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?
例4(1)判断函数的奇偶性。
(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。
(五)总结反馈
在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1、3a组第6题。
思考题:课本第39页习题1、3b组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。
三人行,必有我师焉。快回答为大家整理的12篇高中数学说课比赛一等奖说课稿到这里就结束了,希望可以帮助您更好的写作高中数学说课稿。