作为一位杰出的教职工,通常会被要求编写教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?这里给大家分享一些关于高中数学正弦定理教案,方便大家学习。下面这6篇正弦定理教学设计是快回答为您整理的正弦定理教案范文模板,欢迎查阅参考。
《正弦定理》教学设计 篇一
《正弦定理》教学设计
教学目标:
1、理解并掌握正弦定理,总结归纳用正弦定理解三角形问题的步骤。
2、探究证明定理的方法,理解正弦定理是对任意三角形中“大边对大角、小边对小角”的量化研究,从中体会知识的发生发展过程。
3、在探究及其证明的过程中,培养学生发现问题、解决问题的能力,初步感知数学中由定性到定量的思维方法。
教学任务分析:
正余弦定理作为解三角形的基础,重要性不言而喻。一方面它们可以合力解决数学中的大量问题;另一方面,它们在实践中也发挥着重大作用,比如距离、高度、速度等的测量。这节课是正弦定理的第一节课,需要先证明正弦定理和明确正弦定理可以解决哪些三角形问题。正弦定理的证明方法有很多,比如平面几何法和向量法,也是简单的方法,可是它们都无法轻易得出比值是2R这一结论,因而我在教学中采用外接圆的方法,将三角形内角转化成直角三角形中的锐角,再利用锐角三角函数得出定理,过程稍稍复杂,可对于提高学生分析问题、解决问题的能力还是有帮助的。这节课还会通过练习让学生总结归纳正弦定理解三角形的类型和方法。综上,我将本节课的教学重点定为:正弦定理的证明及其使用。学生情况分析:
一方面,正弦定理和余弦定理作为解三角形的理论基础,它们形式简洁漂亮,学生易于接受。在探究证明方法时,学生也具备一定的分析问题的能力,也储备了一些知识,比如初中时平面几何中的知识和已经学习过的三角函数的知识,他们也知道也将问题做类比和转化,这些无疑都是有利的。可是,另一方面,高一的学生在综合应用所学知识上还有欠缺,思维也不够缜密,比如这节课从直角三角形中得到边角关系后,接下来要证明在任意三角形中也成立,学生可能束手无策,不知道将问题引向何处,这时就需要教师的引导。另外,现在很多学生运算能力相对薄弱,也会导致用正弦定理解三角形时漏解或多解情况的出现。总之,我认为学好正余弦定理也是将学生的思维水平和运算能力提高的一个好机会。综上,我将本节课的教学难点定为:
1、探究定理证明的方法,比值等于2R的由来。
2、由正弦函数在区间上的单调性分析正弦
3、应用正弦定理解决第二类问题时,可能教学工具:多媒体课件。教学过程:
一、创设问题情境,引入新课 问题1:初 问题2:对对小角”仅是的知识得到这
中时你学过哪些关于三角形边角关系的结论? 于任意三角形中的边角关系“大边对大角、小边一种感性认识,或者说定性分析,能否利用所学个边角关系准确的量化表示?如右图。
定理是一种定量的研究。碰见多解的情况。
设计意图: 对于问题1,学生可以提供多种答案,教师可以往任意三角形这个方向引导,问题2则开门见山奔向这节课的主题。
二、正弦定理的证明及其应用
(一)定理的证明
对于边角关系,首先想到的是特殊三角形,即直角三角形中的边角关系,我们先得到直角三角形中的结论,然后看能否推广到一般三角形中。
如右图,因而,由于C=900,sinC=1 所以可得
问题3:这是一个连比的式子,三者的比值相等,那么这个比值具体应该是多少呢?
分析:比值等于,联想到直角三角形外接圆的圆心在斜边的中点上,即斜边是外接圆的直径,用2R表示。
由此得到 设计意图:这个问题的解答很关键,起到承上启下的作用。接下来,只需探讨该结论是否适合一般三角形,而2R是三角形外接圆的直径,就会自然而然将学生引向利用外接圆研究一般三角形中的边角关系。
以下是锐角三角形和钝角三角形中该结论的证明:
若△ABC是锐角三角形,则外接圆圆心在该三角形内部。连外接圆的一条直径BD,则
所以
因而
所以
在与学生共同探究的过程中,可以设置下面的问题:
(1)受直角三角形的启发,应该会用到锐角三角函数,所以一定要构造直角三角形,在外接圆已经做出的情况下,如何去构造直角三角形?
(2)如何转化角?即为什么若△ABC是钝角三角形,则外接圆圆心在三角形外部。连直径BD,则可得
(想一想,为什么?)?
在Rt△BCD中,又A=1800-D
所以sinA=sin(1800-D)=
即
得出与锐角三角形中相同
因而在钝角△ABC中,仍然成立。
综上,在任意△ABC中,都成立,即各边与其所对角的正弦的比值相等,且都等于三角形外接圆的直径,由于该式涉及角的正弦,即称作正弦定理。问题3:如何说明正弦定理是对任意三角形中边角关系的一种量化表示? 分析:我们不妨反过来解释为什么“大角对大边,小角对小边”,即弦定理可知,只需说明
即可。
。由正(1)若A、B都是锐角,则。
(2)若A是钝角,B是锐角,由A+B
,得B
-A,又因设计意图:此问题是本节课的难点之一,很多同学会使用正弦定理,但是对于定理是刻画任意三角形边角关系这一意义含糊不清。在这会用到析,尤其是对于第二种情况,值得同学思考。定理的变式:(1)
(边化角)
在上的单调性进行分(2)(3)
(角化边)
(4)
(二)正弦定理的应用 解三角形:
称为三角形的元素,已知某些元素求其他元素的过程。
例1:△ABC中,已知=20,A=300,C=450,解此三角形。分析:这属于已知两边一角,求其余的一角两边的问题。例2:△ABC中,已知,=1,B=450,解此三角形。
分析:这属于已知两边及其一边的对角,求其余两角一边的问题。
问题4:对于例2,思考,为什么例1只有一解而例2有可能多解?,可能出现两解,如何取舍?进一步设计意图:用正弦定理的时候很容易出错的就是多解的情形,通过此例让学生探索取舍的办法。已知两角一边实质上该三角形就是确定的,而两边及其一边的对角时这样的三角形并不唯一。如果在课堂上可以顺利得出这样的结论,那学生会有茅塞顿开的感觉,势必会加强学习数学的兴趣和自信。
练习:已知在△ABC中,A=450,=2,解此三角形。
问题5:通过以上例题和练习,总结归纳正弦定理可以解决怎样的三角形问题,归纳出步骤。设计意图:这是本节课的收尾问题,由学生自己总结归纳。正弦定理应该是知三求三的过程,需要知道三个独立的条件,这点需要学生明白。
三、课堂小结
1、本节课的重要内容——正弦定理,是任意三角形中边角关系的准确量化。
2、本节课的思想方法:证明正弦定理时,先从直角三角形中得到结论,然后推广到一般三角形中,这种从特殊到一般的研究方法是数学中常用的思想方法。另外,还有类比、转化、归纳等方法。
四、教后心得
本节课是我刚上完的课,感触很深。证明正弦定理的方法很多,有比这种外接圆的方法简单的证明方法,比如向量法和课本上通过高的方法,但是唯有这种方法能够比较简单的得到比值是2R这样的结论,当然中间的过程也不算简单,要构造直角三角形,要将角转化,可是这些对于学生思维水平的提高还是很有帮助的,也能使得学生更加清楚数学知识发生发展的过程,将未知问题转化为自己可以动手操作的问题,我认为这一点意义还是很大。还有对于多解的情况,我希望学生可以借助内角和和大边对大角来判断,并没有加大这一点的难度。当然对于这节课的教法也希望得到更多老师、专家的指导。
板书设计: 1.正弦定理的证明
直角三角形
锐角三角形
钝角三角形 2.变式 3.例题、练习
正弦定理教案 篇二
高职高专教育的根本任务是培养大批应用能力强的技能型人才,这就决定了高职高专教育必须实行产教结合、校企合作的办学模式,为了提高职业教育质量,同样要求实行工学结合、校企合作、顶岗实习的人才培养模式,在教学模式上,要求进行相应的变革。教学模式的改变要求“教学资源”随之变化。
二、“任务驱动”教学的研究意义
目前,国内外许多课程教学改革都已开始基于工作过程的教学改革,而国内对这方面的研究多运用于信息技术课程[1]中,在电工课程教学中运用较少。电工课程是电气专业的一门专业基础课程,目前这门课程在教学中存在一些问题,主要表现在:(1)教学方法不适应教学目标。电工是一门实践技术课程,教学要充分与实践结合,学以致用,可当前教学单纯强调知识传授,忽视学生主体地位,忽视学生实践运用能力和创新能力培养,以致教学效果不佳。(2)学生方面,学生一味接受理论灌输式学习,缺少相关实际经验和实际技术知识,学习难度大,从而影响学习积极性和主动性。(3)办学条件不足。近年来由于扩招,学生人数骤增,再加上课程内容增加,教学目标提高,课时不仅不增加反而减少,以致课时紧张,造成主观上重视电工基础教学,客观上却忽视课程教学的现状。基于以上问题,受现代教育理论建构主义思想启发,采用任务驱动教学法[2]进行教学研究,调动学生学习积极性和主动性,让学生带着任务寻找相关学习资源解决问题,学习目标明确,从而提高教学效率,逐步形成一个感知心智活动的良性循环,培养学生主动探究、敢于实践及解决问题的能力。针对这钟新的教学方式———基于任务驱动的情景教学法,在教材编写方案中打破传统教学方式下理论知识与实践分开的模式,对教材内容进行重构,突出学生的职业能力培养,将工作任务训练与理论知识有机结合,每个任务的能力训练部分再设置相应的问题以促进学生思考和课堂讨论,从而培养学生分析与解决实际问题的能力,真正实现“教、学、做”一体化。并通过一系列实践验证及师生共同讨论、分析,激发学生学习主动性,增强教学改革效果。
三、《电工技术》教材的开发项目实施方案
(一)具体改革内容1.编写教材内容充分体现任务驱动特征,适合我校发电厂及电力系统教改专业的教学使用。2.传统教学中,理论教学的教材与实践教学的教材是独立的,打破原有模式,以理论教学教材内容为基础,将实践教学教材内容与其进行有机整合,科学、合理地设计教学任务。教学任务的设计充分考虑学生的认知规律,由浅到深、由简单到综合,循序渐进。通过实践提高动手能力,在做的过程中深入领会理论知识,将理论知识与实际应用有机融合。3.教材中应明确学习目标,对任务准备、实施步骤描述清晰,为实施任务做铺垫的相关理论知识准备充分。
(二)具体案例本文以教材中的“交流正弦量的认识”为例。我校普通电气专业使用的教材是全国高职高专电气类精品规划教材《电工基础》,该节内容在第四章,按照传统教学方法,分别给学生讲解正弦量的三要素,正弦量的相量表示方法,正弦量中的电阻元件、电容元件、电感元件中电流和电压的关系,学生对这些相位关系看不到、摸不到,只能单纯靠想象死记硬背,学习起来感觉内容枯燥,没有目标,从而学习积极性、主动性不高,学习效果一知半解。可是,当讲到第五章正弦交流电路的分析时,需要使用前面学到的知识,但是由于前面学习时一知半解,这样就给正弦交流电路的分析学习带来困难。基于任务驱动教学法[3]的《电工技术》教材中,根据对教材和学生的分析,实施以“任务”为线索,以“学生”为主题,以“老师”为导向的任务驱动法:1.提出任务。情景一:示波器、信号发生器的认识:在教师的指导下,认知示波器各种按钮的作用及操作,认识信号发生器的结构及操作。情景二:正弦波的认知:在教师的指导下,通过信号发生器和示波器观察正弦波形,了解正弦量的特点及基本要素。情景三:相位差的认知:在教师的指导下,通过信号发生器和示波器观察正弦波的相位差。2.教学流程。情景一:(1)布置学习任务,引导学生观察示波器和信号发生器的结构;(2)学生分组,认识示波器各种按钮的作用,了解其原理,将示波器校准;(3)检查校准结果,师生讨论、小结。情景二:(1)布置学习任务,先将信号发生器和示波器正确连线;(2)将信号发生器作为源信号,调节输出信号为正弦波。通过示波器识读正弦波的参数,了解正弦波特性。(3)查看显示情况,师生讨论、总结。情景三:(1)布置学习任务,按图9-1正确连线;(2)将信号发生器作为源信号,调节输出信号为正弦波。通过示波器同时显示两个同频正弦量的波形,了解同频正弦量的相位差。(3)画出两个正弦波形,计算其相位差;(4)师生讨论、总结。3.情景讨论。正弦量的三个要素是什么?每个要素的含义是什么?超前、滞后的概念?相位及相位差的范围?4.教学效果与反思。本次课达到了预期的教学目的,通过课后作业的批改,全体学生都能正确完成作业,取得圆满的成功。本次课的成功在于能充分激发学生的学习兴趣,通过示波器学生看到交流电的实际工作波形,不再是纸上谈兵,充分抓住学生的好奇心和兴奋点,以此为线索,将重点知识隐含其中,内容紧凑,环环相扣,一气呵成。趁热打铁进行课堂练习、讨论与答疑,进一步巩固教学效果。
四、结语
正弦定理教案 篇三
一、注重沟通,消除思想包袱
对中职生的心理特征、认知水平和学习环论文联盟境等因素进行深入细致了解是做好数学教学工作的基础。中职生长期背负分数的压力,对数学学习失去信心。我们要让他们卸下包袱,愉快的进行思维和学习。
心理学研究表明:人们对自己感兴趣的事物会特别关注,进而产生敏锐的感知、活跃的思维和丰富的想象,乃至执着的追求。而数学成绩差的学生往往与数学教师缺乏交流,对数学教师没有没有好感甚至有抵触情绪。教师要想学生不惧怕数学,喜欢数学,就要使出浑身解数吸引学生眼球,激发他们的兴趣。
多渠道加强交流。教师应以平等的观念,主动了解学生关心的话题,经常与学生交流,适当地与学生谈心、聊天,既是课堂里的德育渗透,也能营造氛围。课后谈心要注意因地制宜、因人而异。逐渐就会拉近教师和学生心理上的距离,掌握与学生交流的主动权。
二、巧妙安排教学过程,提高学生思维能力。
目前中学生中多数是独生子女,自尊心和个性比较强,结合学生的这一特点,需要教师帮助学生树立远大的理想和正确的分析问题、解决问题的能力。因此在数学教学中教师不仅要帮助学生打好基础,更要把学习的方法教给学生。
1、增加互动,引导学生积极思维
为了提高学生学习兴趣和思维能力,在教学中,通过巧妙安培生动活泼的教学过程,既适合学生的心理特点,又符合学生的认识水平,使课堂教学始终处于兴奋之中。通过教师提问,促进思维;学生质疑,发展思维来帮出学生从课本中的无疑——有疑,又从有疑——解疑——新疑,养成学生善于思维的习惯。例:在垂径定理的推论教学中,教学过程作下安排:问1、垂径定理的内容是什吗?答:垂直于弦的直径平分弦,并且平分弦所对的弧。问2、让学生找出定理中的关键的字词。答:垂直于弦、直径过圆心、平分弦、平分弧 (优弧、劣弧)。
由此可见,定理中包含了五个条件:①过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分线所对的优弧。
在上述五个条件中,若知道其中两个条件,能否得出其他三个条件?同学们经过画图思考,互相讨论的除了“能”的结论。再经过补充完善,得到了垂径定理的三个常用推论:
1、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。2、垂直平分弦的直线经过圆心,并且平分这条弦所对的两条弧。3、平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
2、掘材生活,活跃学生思维
要想学生喜欢上数学课必然要改变新知识的呈现方式。模拟生活情境的教学方法对中职生是最适宜的,具有形象、生动、感性、直接、趣味等特点。强调教学内容与学生日常生活的联系,把问题置于现实场景中,赋予教学内容一定的实际意义。
例:在美国广为流传的一道数学题目是:“老板给你两个加工资的方案。一是每年年末加一千;二是每半年结束时加300元。请每个学生选一种。一般不擅数学的,很容易选择前者:因为一年加一千元总比两个半年共加600元要多。其实,由于加工资是累计的,时间稍长,往往第二种方案更有利。例如,在第
转贴于论文联盟
二年的年末,依第一种方案可以加得1000+2000=3000元。而第二种方案在第一年加得300+600元,第二年加得900+1200=2100元,总数也是3000元。但到第三年,第一方案可得1000+2000+3000=6000元,而第二方案则为300+600+900+1200+1500+1800=6300元,比第一方案多了300元。到第四年、第五年会更多。因此,你若会在该公司干三年以上,则应选择第二方案。那么,第二方案中的每半年加300元改成200元如何?对不起,那就永远赶不上第一种方案得到的加薪数了。仔细分析,这是一道等差级数的好题目。这一问题还可以做更细致的分析和推广。其实学数学,就是要使人聪明,使人的思维更加缜密。论文联盟
3、巧用史实,激发学生思维情绪
正弦定理教学设计 篇四
《正弦定理》教学设计
茂名市实验中学张卫兵
一、教学目标分析
1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析
重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程
1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;
2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;
3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;
4、应用正弦定理解三角形。
四、教学情境设计
五、教学研究
1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
3、新课标强调要发展学生的应用意识,增强学生应用数学解决实际问题的能力。本设计以一个实际问题出发引入正弦定理并让学生在练习3中解决这一问题,这不但使学生体会到了数学的作用,而且使学生的数学应用意识和应用数学解决实际问题的能力得到了进一步的提高。
正弦定理教案 篇五
从学生的认知过程和思维过程来看,对于一个问题的彻底解决,一般要经历三个阶段:第一,对问题的理解,产生解决问题的假设;第二,对问题的解决,针对假设进行论证或验证;第三,对问题的反思,将具体问题形式化。要成功地解决问题,这三个阶段缺一不可,将“问题”渗透到数学的教学过程之中,学生的思维能力就会在问题解决中不断提高。鉴于此,教师在日常的教学中,需要从三个层面培养学生的“问题”意识。
一、依托学生实情,精心设计问题
数学教学需要揭示数学的本质,教学中要讲道理,更要讲推理,努力把数学的学术形态适当地转化为学生易于接受的教育形态。“学起于思,思源于疑”,学生的思维参与往往是从理解问题开始的,故此教学问题的设计在符合知识本位要求的同时,还要考虑到学生学习的“最近发展区”,只有这样,问题的提出与解决才会对课堂教学的推进起到关键作用。问题的设计不仅需要从角度、难度、跨度和广度等方面启迪学生思维,使学生的思维活动逐渐由已知引入未知,达到释疑、解惑的目的,还要随着教学过程的展开成为一个连续的过程,并形成几个高潮,不断激发学生的学习动机,使学生处于“愤悱”的状态。要尽可能提供给学生思考、探究的时间和空间,因势利导,适时进行学法指导,积极主动、勇于探索的学习方式才可能落到实处,实现知识的迁移和能力的飞跃。
案例1:在人民教育出版社新课改数学教材必修4“正弦、余弦函数的图像”一节的教学中,考虑到学生课前知识储备和数学思维基础的实情,为达到本课时的三维教学目标,整节课在借用“装满细沙的漏斗做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”形成正弦、余弦函数图像的感知后,仅仅设计两个教学问题就可以完成整个教学过程。问题1:如何做出正弦函数的图像?发散性问题的提出,自然给学生提供了较为宽广的思维空间。学生间的相互启发,教师的点拨评价,很快就出现了“对话式”的教学场景。学生在问题的探讨中,先后提出了计算机作图,特点是快捷、准确、欠缺过程;描点法作图,特点是费时、粗略、难于计算数值;几何法作图,依据是建立单位圆中的正弦线与函数图像间点的关系。当然,本问题的提出重点在师生探讨如何利用正弦线做出正弦函数的图像。问题2,如何做出余弦函数的图像?在上面三种做法的基础上,学生通过对前面所学习的三角函数诱导公式的回忆,提出了第四种得到余弦函数图像的方法,依据诱导公式:,将正弦函数图像向左平移个单位得到。正是上面两个教学问题的依次提出,学生在合作探究、质疑展示中才很好地完成了一节课的教学任务。
二、倾听学生反馈,细心捕捉问题
传统教学中,教学以我为中心,以教参为中心,以标准答案为中心,在“自己设立的问题”模式中,认为学生的回答完全落入教师设计的轨道,这样的教学过程便是成功。新课程改革带给课堂一缕清风,教师要秉承“以人为本”的教育理念,努力成为学生学习的指导者与合作者。课堂教学中,教师不仅要关注学生对自己提出的问题回答得正确与否,重要的是能否善于分析出学生问题反馈中错误的归因。哪怕是学生给出问题的答案超出预想,教师也大可不必立刻表明否定态度,俯下身子挖掘到学生问题构想的障碍更是难能可贵。因此,课堂中不仅要注意预设问题的解决,同时要关注课堂生成性问题的处理。教师对课堂富于价值性问题的捕捉与延伸,信手拈来,为我所用,这正是教学的科学性和艺术性所在。
案例2:在上面的教学案例中,本节课的教学难点是引导学生借用单位圆中的正弦线做出正弦函数图像。这个教学环节一定是由师生共同完成的。在教学的实施中,我预设的教学课件是将单位圆等分12等份,分别做出各个角度的正弦线,通过线段的平移得到一些特殊角的正弦值。而学生王某扬言要将单位圆等分10份,这与我的课前准备显然不一致。从教多年的睿智让我继续追问学生如何运用尺规平分圆周得到360°角的问题。假若不能顺利将圆周角10等分,就无法通过度量得到相应角的正弦值。学生既而认识到了这样等分显然不是很合理。虽是简单的一句追问,这里既体现出对学生话语的尊重,还达到了学生自己修正问题答案的效果。通过师生间的平等对话,很快就确定了通过正弦线做出函数图像的基本步骤。(1)建立直角坐标系,在直角坐标系中y轴左侧画单位圆。(2)把单位圆分成12等份,过单位圆上的各点作x轴的垂线可以得到对应于角的正弦线。(3)确定横坐标:把x轴上从0到2π这一段分成12等份。(4)确定纵坐标:将正弦线对应平移,指出相应的12个点。(5)连线:用平滑的曲线将12个点依次从左到右连接起来,可得图像。借的图像,通过正弦线“周而复始”(依据是诱导公式,其中)的变化规律得到正弦曲线。在教学反思中我写到,正确面对课堂教学中发生的“意外”,只要引导得当,将课堂还给学生,便可以较好地培养学生探究数学的兴趣和能力。教师思维的机智灵活,往往换来的是学生的惊人发现。
三、激活学生思维,匠心善待问题
著名教育家布鲁巴克指出:最精湛的教学艺术,遵循的最高准则就是学生自己提问题。有些教师总爱以讲为主,教学“一言堂”的出现顶替了学术探讨中的“百家争鸣”。如何善待提问,早在《学记》中就有论述:善待问者如撞钟,叩之以小者则小鸣,叩之以大者则大鸣,待其从容,然后尽其声。不善答问者反此。“善待问”,是教师对学生的最大鼓励,也是对学生的希望与信任。只有把课堂当做思想交流的对撞场所,学生才能“肆无忌惮”地提出质疑,甚至否定,教师也才能善待学生在教学上的挑战。依建构主义的观点来看,知识必须通过学生的主动建构才能获得。所以,课堂应成为教师与学生、学生与学生“思维碰撞”的场所,只有把认知因素与非认知因素有机结合起来,充分调动学生认知的、心理的、生理的、情感的、行为等方面的因素,让学生进入一种全新的境界,学生“问题”的意识才能自觉。
案例3:在人民教育出版社新课程数学教材必修1“函数的单调性”的教学中,我设计的问题是:以函数y=x+1为例,如何量化说明“y随x的增大而增大”?问题的提出,便给出学生较为开放的探索空间,随着学生的深入探究,提出了渐为完备的解决方案。学生为表述y随x的增大而增大,借了图像上多个孤立变量x值的增大:x值依次取1,2,3,4……相应y值的增大,y值依次得到2,3,4,5……来体现。此时,个别学生提出了图像上一些离散点的变化规律,不能反映图像连续的变化趋势,产生了“举全做不到,举不全不可信”的认知冲突。于是学生的争议过后,提出的问题是:如何借用数量体现自变量选取的任意性及相应函数值变化的一致性?促使学生继续探索,需用“任意、都有”两词来实现。通过学生的积极参与、问题的提出与解决,逐步突破抽象定义的难点――用离散的变化特征表述连续的变化趋势。后继的教学中,学生针对函数f(x)在区间(a,b)上是增函数的定义:且x1
正弦定理教案 篇六
一、初中数学导学案应用的功能分析
1.激发兴趣,提高学习效率
导学案在初中数学中的有效应用,其一个积极的影响就是做到了有效组织学生提前预习知识的作用。这样就让学生不自觉的承担了一定的学习任务,从而自主参与到学习中,在这个过程中学生获得知识的途径一方面由自主探究获得,利于激发学生自身的成就感和自信心,另一方面对自主学习时没有弄懂的问题,由教师指导掌握,这样利于学生主动参与课堂,提高课堂效率,同时也增强了学生学习的兴趣。再者,合理利用导学案如利用当堂检测的方式,让不同层次的学生通过自主预习完成不同层次的练习,并在课堂上创设竞争氛围,从而让学生在好胜心理的驱动下对学习数学产生浓厚兴趣,从而取得较好的教学效果。
2.积极思考,实现互动
导学案的的使用,是的相关数学知识的了解和掌握大多都是由学生自主完成的,或者说是由学生之间,师生之间合作探讨、相互交流完成的。在其实施过程中,学生自主参与,积极思考。通过检测,教师就可以针对普遍存在的问题进行讲解,实现师生互动,同时敬爱那个接的过程中又加深了学生对知识点的记忆和掌握。同时,由于教师设计导学案时会考虑到学生学习的各个阶段,这样就促使学生在每一个阶段都得按照一定的学习思路进行学习、探讨,重视每一个阶段,从而有利于帮助学生养成良好的学习习惯,为学生自主学习打下基础。再者,导学案的运用主要目的在于指导学生学会自主学习、积极参与,加之其课前预习,课上巩固,课后复习的方法对于帮组学生学会学习,学会创新,掌握一定学习方法,进而影响到其他学科的良好进行,也是有诸多益处的。
二、初中数学教学中使用导学案应该注意的问题
1.强化预习,循序渐进
虽然导学案的实施主要依靠学生自主学习,其中最主要的就是自主预习。但是,很多学生会出现不知道预习方法,或者是不预习的情况。所以,教师在组织学生运用导学案学习的过程中,应当对学生加以适当的辅导,让学生能够带着问题进行探究,从而帮助学生理解并掌握相关的数学知识和基本技能,传授给学生一定得数学方法,增强学生对数学的感受力。在此过程中,要循序渐进,缓缓引入。如在学习圆的相关知识时,可以预设此题:在0中,AB为直径,CD为弦,ABCD,P为圆周上与C、D不重合的任意一点,判断∠COB与∠CPD的数量关系,并证明你的结论。
对于这道题目老师可以先让学生进行自我思考,思考题目可能会出现的答案和结果。然后引导学生进行分析,由于点P可能在优弧CPD上,也可能在劣CD上,有如图(1)、(2)两种情况,答案:AB为0的直径,CD为弦,ABCD,这样符合垂径定理的条件。
(1)当点P在优弧CPD上时,如图(1)∠COB=∠CPD。
2.强化基础,突出知识练习
由于导学案的设计主要是为了落实基础知识,培养学生一定的学习习惯和思维能力,但就数学学科而言对学生的辅导确不能仅仅局限于这一点上,而还应该注重学生的认知水平的提高。因此,在导学案上除了基础知识的设计外,教师还应该设计一些紧扣本节知识的相关案例,帮引导学生由此及彼、深入浅出的掌握知识,并在课后设计一些围绕学生容易出现错误的地方,和一些涉及重难点的练习题,从而起到巩固学生知识的作用。如在讲到圆时,可以注重基础知识的练习,如:1.圆的弦长确好等于该圆的半径,则这条弦所对的圆周角是 度。2.ABC内接于0,∠AOB=10,则∠ACB=______度。3.圆的半径等于2,圆内一条弦长 cm,则弦的中点与弦所弧的中点的距离为______ 。
夫参署者,集众思,广忠益也。上面就是快回答给大家整理的6篇正弦定理教学设计,希望可以加深您对于写作正弦定理教案的相关认知。