1. 主页 > 知识大全 >

二次函数教案(优秀7篇)

作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么应当如何写教案呢?以下是快回答给大家分享的7篇二次函数教案,希望能够让您对于二次函数教案的写作有一定的思路。

《二次函数》数学教案 篇一

一、教材分析

1.教材的地位和作用

(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

④会根据二次函数的性质解决简单的实际问题。

3.学情分析:

(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力较学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。

4.教学目标

◆认知目标

(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

◆能力目标

提高学生对知识的整合能力和分析能力。

◆ 情感目标

制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(1)掌握二次函数y=图像与系数符号之间的关系。

(2) 各类形式的二次函数解析式的求解方法和思路。

(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。

难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决几何问题。

二、教学方法:

1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

三、学法指导:

1.学法引导

“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

四、教学过程:

教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的教学设计环节:

◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

安排三个层次的练习。

(一)从定义出发的简单题目。

(二)典型例题分析,通过反馈使学生掌握重点内容。

(三)综合应用能力提高。

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

(四)方法与小结

由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

五、评价分析:

本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

《二次函数》数学教案 篇二

一、教材分析

1、教材的地位和作用

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

2、教学的重点和难点

教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

教学难点:掌握从函数的性质推断图象的方法。

二、目标分析

按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

三、教法学法分析

遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。

四、教学过程分析

根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题

师生互动、探究新知

独立探究,巩固方法

强化训练,加深理解

小结归纳,拓展深化

布置作业,提高升华

环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。

在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系。当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性。

在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去。最终寻求到解决问题的方法。

教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力,学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固。

通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。

第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。

最后一个阶段是布置作业,提高升华,作业的设置是分层落实。巩固题让学生复习解题思路,准确应用,以便举一反三。探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力。

以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。

初中数学二次函数教学设计 篇三

Ⅰ.温故知新、引入新课:

二次函数的图象是____________.

(1)开口___________;

(2)对称轴是___________;

(3)顶点坐标是___________;

(4)当时,随的增大而___________;

当时,随的增大而___________;

(5)函数图象有___________点,函数有___________值;

当_____时,取得__________值____.

问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?

Ⅱ.自主探索、小组互学、展学提升:

1、学生活动内容及方法

学生以小组为单位:(1)作出二次函数的图象;

(2)观察、思考并与同伴交流完成“议一议”

(3)一小组派代表展示,其它小组与老师评价、完善。

2、自学问题设计

(1)作出二次函数的图象:

列表:观察的表达式,选择适当的值,填写下表:

描点:在直角坐标系中描出各点;

连线:用光滑的曲线连接各点,便得到函数的图象。

议一议:

仔细观察,用心思考,与同伴交流:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

3、教师活动内容

教师巡视,察看学生完成情况并适时给予指导。

当学生展开讨论时,参与到学生的交流中启发、点拨学生的思维。

当学生展示时,适时质疑、反问,帮助学生完善自己的思考

Ⅲ.自主探索、展示完善:

1、学生活动内容及方法

学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程,已经积累了一些方法和经验,所以此环节由学生自己独立完成:

(1)作出二次函数的图象;

(2)观察、思考完成“想一想”

(3)一学生展示,其他同学与老师评价、完善。

2、自学问题设计

问:

二次函数的图象会是什么样子?它与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?它图象的开口方向、对称轴、顶点坐标是什么?它的增减性、最值是什么情况呢?请你先猜一猜,然后做出它的图象观察思考,你猜的对吗?

(1)作出二次函数的图象:

列表:观察的表达式,选择适当的值,填写下表:

描点:在直角坐标系中描出各点;

连线:用光滑的曲线连接各点,便得到函数的图象。

(2)想一想:

仔细观察,用心思考:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

3、教师活动内容

教师巡视,察看学生解决问题情况并适时指导。之后请学生展示,师生共同评价完善。

Ⅳ.自主探索、小组互学、展学提升:

1、 学生活动内容及方法

学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基础上总结二此函数的性质。

2、导学问题设计

猜一猜:

(1)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质。

(2) 二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质。

议一议:

(1)二次函数的图象与二次函数的图象有什么关系?

(2)二次函数的性质:

二次函数

性质

开口方向

对称轴

顶点坐标

增减性

当______时,随的增大而增大;

当______时,随的增大而减小。

当______时,随的增大而增大;

当______时,随的增大而减小。

最值

当____时,函数取得

最____值____.

当____时,函数取得

最____值____.

3、教师活动内容

观察学生完成问题情况,并适时给予点拨。学生展示,师生共同评价完善。

Ⅴ.评测练习

1. 函数的图象可由的图象向平移 个单位长度得到;

函数的图象可由的图象向 平移 个单位长度得到。

2. 将函数的图象向平移 个单位可得函数的图象;

将函数的图象向平移 个单位长度可以得到函数的图象;

将函数的图象向平移 个单位可得到的图象。

3. 将抛物线向上平移3个单位,所得的抛物线的表达式是 .

将抛物线向下平移5个单位,所得的抛物线的表达式是 .

4. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,当时,随的增大而 ,当时,随的增大而 ,当 时,函数取得最 值,这个值等于 .

5. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,随的增大而 ,在对称轴的右侧,随的增大而 ,当x= 时,函数取得最 值,这个值等于 .

6. 二次函数的图象经过点A(1,-1),B(2,5),则函数的表达式为 ;若点C(-2,m),D(n ,15)也在函数的图象上,则点C的坐标为 ,点D的坐标为___________

《二次函数》数学教案 篇四

教学目标

【知识与技能】

使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】

使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】

使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点

【重点】

使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】

用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程

一、问题引入

1.一次函数的图象是什么?反比例函数的图象是什么?

(一次函数的图象是一条直线,反比例函数的图象是双曲线。)

2.画函数图象的一般步骤是什么?

一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

3.二次函数的图象是什么形状?二次函数有哪些性质?

(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。)

二、新课教授

【例1】 画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:

(1)二次函数y=x2的图象是什么形状?

(2)图象是轴对称图形吗?如果是,它的对称轴是什么?

(3)图象有最低点吗?如果有,最低点的坐标是什么?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价。

函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线。实际上二次函数的图象都是抛物线。二次函数y=x2的图象可以简称为抛物线y=x2.

由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点。实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点。

【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象。

解:分别填表,再画出它们的图象。

思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象。

学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价。

抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大。

探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。

师生活动:

学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳。教师巡视学生的探究情况,若发现问题,及时点拨。

学生汇报探究的思路和结果,教师评价,给出图形。

抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大。

探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?

师生活动:

学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳。

教师巡视学生的探究情况,发现问题,及时点拨。

学生汇报探究思路和结果,教师评价,给出图形。

抛物线y=x2、y=-x2的图象关于x轴对称。一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称。

教师引导学生小结(知识点、规律和方法).

一般地,抛物线y=ax2的对称轴是y轴,顶点是原点。当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大。

从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;如果a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小。

三、巩固练习

1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是。

【答案】下 (0,-4) x=0 0 大 -4

2.当m≠时,y=(m-1)x2-3m是关于x的二次函数。

【答案】1

3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.

【答案】-3或3 -12

4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.

【答案】 12

5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为。

【答案】y=-2x2

6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()

A.y=x2B.y=x2

C.y=-2x2 D.y=-x2

【答案】C

7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()

A.y=x2 B.y=4x2

C.y=-2x2 D.无法确定

【答案】A

8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()

A.两条抛物线关于x轴对称

B.两条抛物线关于原点对称

C.两条抛物线关于y轴对称

D.两条抛物线的交点为原点

【答案】C

四、课堂小结

1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数。

2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点。当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大。

3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来。

教学反思

本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质。整个内容分成:

(1)例1是基础;

(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;

(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;

(4)最后让学生比较例1和例2,练习归纳总结。

九年级数学二次函数教学设计 篇五

教学目标的设定:

一、 教学知识点:

(1)、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

(2)、 理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根。

(3)、 理解一元二次方程的根就是二次函数与y =h 交点的横坐标。

二、 能力训练要求:

(1)、经历探索二次函数与一元二次方程的关系的过程,培养学生的探 索能力和创新精神。

(2)、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想。

(3)、通过学生共同观察和讨论,培养合作交流意识。

三、 情感与价值观要求

(1)、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

(2)、 具有初步的创新精神和实践能力。

教学重点:(1).体会方程与函数之间的联系。

(2).理解何 时方程有两个不等的实根、两个相等的实根和没有实根。

(3).理解一元二次方程的根就是二次函数与y =h 交点的横坐标。

教学难点(1)、探索方程与函数之间的联系的过程。

(2)、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系。 解决重难点的方法1、 设问题情境,引入新课

我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?

它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转

化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索这个问题。

初中数学二次函数教学设计 篇六

建立二次函数模型教学设计

教学目标:

1.使学生能利用描点法画出二次函数=a(x—h)2的图象。

2.让学生经历二次函数=a(x-h)2性质探究的过程,理解函数=a(x-h)2的性质,理解二次函数=a(x-h)2的图象与二次函数=ax2的图象的关系。

重点难点:

重点:会用描点法画出二次函数=a(x-h)2的图象 ,理解二次函数=a(x-h)2的性质,理解二次函数=a(x-h)2的图象与二次函数=ax2的图象的关系是教学的重点。

难点:理解二次函数=a(x-h)2的性质,理解二次函数=a(x-h)2的图象与二次函数=ax2的图象的相互关系是教学的难点。

教学过程:

一、提出问题

1.在同一直角坐标系内,画出二次函数=-12x2,=-12x2-1的图象,并回答:

(1)两条抛物线的位置关系。

(2)分别说出它们的对称轴、开口方向和顶点坐标。

(3)说出它们所具有的公共性质。

2 .二次函数=2(x-1)2的图象与二次函数=2x2的图象的`开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?

二、分析问题,解决问题

问题1: 你将用什么方法来研究上面提出的问题?

(画出二次函数=2(x-1)2和二次函数=2x2的图象,并加以观察)

问题2:你能在同一直角坐标系中,画出二次函数=2x2与=2(x-1)2的图象吗?

教学要点

1.让学生完成下表填空。

x…-3-2-10123…

=2x2

=2(x-1)2

2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。

问题3:现在你能回答前面提出的问题吗?

教学要点

1.教师引导学生观察画出的两个函数图象.根据所画出的图象,完成以下填空:

开口方向对称轴顶点坐标

=2x2

=2(x-1)2

2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数=2(x-1)2与=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数=2(x一1)2的图象可以看作是函数=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。

问题4:你可以由函数=2x2的性质,得到函数=2(x-1)2的性质吗?

教学要点

1.教师引导学生回顾二次函数=2x2的性质,并观察二次函数=2(x- 1)2的图象;

2.让学生完成以下填空:

当x______时,函数值随x的增大而减小;当x______时,函数值随x的增大而增大;当x=______时,函数取得最______值=______。

三、做一做

问题5:你能在同一直角坐标系中画出函数=2(x+1)2与函数=2x2的图象,并比较它们的联系和区别吗?

教学要点

1.在学生画函数图象的同时,教师巡视、指导;

2.请两位同学上台板演,教师讲评;

3.让学生发表不同的意见,归结为:函数=2(x+1)2与函数=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数=2(x+1 )2的图象可以看作是将函数=2x2的图象向左平移1 个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。

问题6;你能由函数=2x2的性质,得到函 数=2(x+1)2的性质吗?

教学要点

让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值随x的增大而减小;当x>-1时,函数值随x的增大而增大;当x=一1时,函数取得最小值,最小值=0。

问题7:在同一直角坐标系中,函数=-13(x+2)2图象与函数=-13x2的图象有何关系?

(函数=-13(x+2)2的图象可以看作是 将函数=-13x2的图象向左平移2个单位得到的。)

问题8:你能说出函数=-13(x+2)2图象的开口方向、对称轴和顶点坐标吗?

(函数=-13(x十2)2的图象开口向下,对称轴是 直线x=-2,顶点坐标是(-2,0))。

问题9:你能得到函数=13(x+2)2的性质吗?

教学要点

让学生讨论、交流,发表意见,归结为:当x<-2时,函数值随x的增大而增大;

当x>-2时,函数值随工的增大而减小;当x=-2时,函数取得最大值,最大值=0。

四、课堂练习: P11练习1、2、3。

五、小结:

1.在同一直角坐标系中,函数=a(x-h)2的图象与函数=ax2的图象有什么联系和区别?

2.你能说出函数=a(x-h)2图象的性质吗?

3.谈谈本节课的收获和体会。

六、作业

1.P19习题26.2 1(2)。

2.选用课时作业优化设计。

第二课时作业优化设计

1.在同一直角坐标系中,画出下列各组两个二次函数的图象。

(1)=4x2与=4(x-3)2

(2)=12(x+1)2与=12(x-1)2

2.已知函数=-14x2,=-14(x+2)2和=-14(x-2)2。

(1)在 同一直角坐标中画出它们的函数图象;

(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;

(3)试说明,分别通过怎样的平…快回答 m.kuaihuida.com…移,可以由函数=-1/4x2的图象得到函数=-14(x+2)2和函数=-14(x-2)2的图象?

(4)分别说出各个函数的性质。

3.已知函数=4x2,=4(x+1)2和=4(x-1)2。

(1)在同一直角坐标系中画出它们的图象;

(2)分别说出各个函数图象的开口方向,对称轴、顶点坐标;

(3)试说明:分别通过怎样的平移,可以由函数 =4x2的图象得到函数=4(x+1)2和函数=4(x-1)2的图象,

(4)分别说出各个函数的性质 .

4.二次函数=a(x-h)2的最大值或最小值与二次函数图象的顶点有什么关系?

《1.1二次函数》教学设计 篇七

教学内容:人教版九年义务教育初中第三册第108页

教学目标:

1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一。 一。 创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2. ①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2 ②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二。 二。 归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

那么,y叫做x的二次函数。

注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三。 三。 尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:一、列表:

x

-3

-2

-1

0

1

2

3

Y=x2

9

4

1

0

1

4

9

二、描点、连线: 按照表格,描出各点。然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来。

对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。

练习:画出函数 ; 的图象(请两个同学板演)

X

-3

-2

-1

0

1

2

3

Y=0.5X2

4.5

2

0.5

0

0.5

02

4.5

Y=-X2

-9

-4

-1

0

-1

-4

-9

画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

三。 三。 运用新知、变式探究

画出函数 y=5x2图象

学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y=5x2

1.25

0.8

0.45

0.2

0.05

0

0.05

0.2

0.45

0.8

1.25

教师出示已画好的图象让学生观察

注意:1. 画图象应描7个左右的点,描的点越多图象越准确。

2. 自变量X的取值应注意关于Y轴对称。

3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。

四。 四。 归纳小结、延续探究

教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:

一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。

五。 五。 回顾反思、总结收获

在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。

(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)

只要功夫深,铁杵磨成针。上面就是快回答给大家整理的7篇二次函数教案,希望可以加深您对于写作二次函数教案的相关认知。