作为一位优秀的人民教师,总归要编写教案,教案是教学活动的依据,有着重要的地位。那要怎么写好教案呢?下面是快回答给大家整理的14篇三年级数学《平均数》教学设计,希望可以启发您对于平均数的写作思路。
平均数 篇一
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容 .
2.了解的意义,会计算一组数据的 .
3.当一组数据的数值较大时,会用简算公式计算一组数据的 .
(二)能力训练点
培养学生的观察能力、计算能力 .
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯 .
2.渗透数学来源于实践,反地来又作用于实践的观点 .
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .
重点·难点·疑点及解决办法
1.教学重点:的概念及其计算 .
2.教学难点:的简化计算 .
3.教学疑点:简化公式的应用,a如何选择 .
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等。这些都涉及数据的计算问题。请同学们思考下面问题。(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验。两人在相同条件下各射靶10次,命中的环数如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法。
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣。
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质。在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面。本章我们将学习统计学的一些初步知识。
(三)教学过程
这节课我们首先来学习。
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .
2.的概念及计算公式
一般地,如果有n个数 .
那么 ①
叫做这n个数的, 读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .
3.计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温 .
让学生动手计算,以巩固计算公式(一名学生板演)
教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量 .(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .
讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .
3.推导公式②
一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
,
那么 ,
因此,
即 ②
为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .
2.求n个数据的的公式① .
3.的简化计算公式② .这个公式很重要,要学会运用 .
方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .
八、布置作业
教材P153中1、2、3、4 .
九、板书设计
教学设计示例2
教学目标
(一)使学生了解的意义,会计算一组数据的。了解加权的意义,并会求加权;
(二)会运用的简化运算方法。
教学重点和难点
重点:会计算及运用的简化方法,会运用加权公式。
教学过程设计
(一)引入新课
在初中一年级代数课本P106的“读一读”那一节,讲的是求。有这样一例题:
女子排球队共有10名队员,身高(单位:米)分别为:
1.73,1.74,1.70,1.76,1.80,1.75,1.77,1.79,1.74,1.72.
求这个队的队员平均身高是多少?
解:求这个的计算方法有两个。
方法1:直接计算
方法2:简化计算
观察一下这些数都在1.75的上、下,这时,可以这样考虑:先计算各数与1.75的差,也就是先都减去1.75(为了不出现小数,不妨把单位换成厘米)得到-2厘米,-1厘米,-5厘米,1厘米,5厘米,0厘米,2厘米,4厘米,-1厘米,-3厘米。
计算这组数的,得:
因为前面计算时,每个数都减去了175厘米,所以把这里的得数0加上175,就得出这个排球队全体队员的平均身高是175厘米
在求一组数的时,只要这组数都接近某一个数,就可以采用这种简化的计算方法。
以上例子告诉我们什么是,怎样求。如果这组数存在着大致在某一个数的上、下波动的情况,可以用简便方法计算。
(二)新课
1.
在统计里,是重要概念之一,它是显示出一组数据的集中趋势的特征数字,也就是说这组数据都“接近”哪个数。
上面的公式①,就是我们在求女排队员身高的“直接算法”。
当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当
公式②就是我们在求女排队员身高的“简便方法”
例1 某食品厂为了加强质量管理,对某天生产的罐头抽查了10个,样本净重如下(单位:克)
342,348,346,340,344,341,343,350,340,342.
求样本的。
解法2:把已知数据都减去342,得0,6,4,-2,2,-1,1,8,-2,0,
例2 从一批货物中取出20件,称得它们的重量如下(单位:千克):
310,308,300,305,302,318,306,314,315,307,
295,307,318,292,302,316,285,327,287,315.
求样本的(结果保留到个位)
即样本为306千克。
解法2:
由于题中数据都较大,而且都在常数300上、下波动,把原数据都减去300,得:
10,8,0,5,2,18,6,14,15,7,-5,7,18,-8,2,16,-15,27,-13,15.
2.加权
设有甲、乙、丙三种可混合包装的食品,它们的单价分别是1.8元,2.5元,3.2元,现取甲种食品50公斤,乙种食品40公斤,丙种食品10公斤,把这三种食品混合后每公斤的单价是多少?
答:混合后的单价为2.50元。这个答案是不对的,因为混合后的售价不仅与每种食品的单价有关,而且还与每种食品的重量(公斤数)有关。这些食品混合后的售价应该等于
这种叫做加权。
一般说来,如果在n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据公式①,这n个数的可以表示为
计算加权的公式③,与计算的公式①,实际上是一回事。当一组数据中有不少数据多次重复出现时,用加权公式计算简便些。在公式③中,相同数据xi的个数fi叫做权。这个“权”,含有所占分量轻重的意思。fi越大,表示xi的个数越多,于是xi的“权”就越重。
例3 某班有50名学生,数学期中考试成绩90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(结果保留到小数点后第一位).
在例1~例3的求问题中可以看到,能够反映出数据的集中趋势。
(三)课堂练习
若4,x,5的是7,则3,4,5,x,6五个数的是______.
(四)小结
1.用样本去估计总体,这是学习的目的。
2.计算公式,简化计算公式,加权计算公式都很重要,应根据具体情况,恰当选取哪个公式
(五)作业
1.数据15,23,17,18,22的是________.
2.5个数据的和为405,其中一个数据为85,那么另4个数据的是______.
(1)105,103,101,100,114,108,110,106,98,102;(共10个)
(2)4203,4204,4200,4194,4204,4210,4195,4199.(共8个)
4.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人。求这个班学生的平均年龄。
5.抽查了一个商店某月里5天的日营业额,结果如下(单位:元):
14845,25306,18954,11672,16330
(1)求样本;
(2)根据样本估计,这个商店在该月里平均日营业额约是多少?
6.在一段时间里,一个学生记录了其中8天他每天完成家庭作业所需要的时间,结果如下(单位:分):
80,70,90,70,60,50,80,60.
在这段时间里,该学生平均每天完成家庭作业所需要的时间约是多少?
作业答案与提示:
1.19.
5.(1)样本是17421元;
(2)根据上面计算结果,可估计在该月里平均日营业额约为17421.
根据样本,可估计该学生平均每天完成家庭作业所需时间约为70分。
课堂教学设计说明
1.是统计中的重要概念之一,通过样本来估计总体。样本容量取得越大,则用样本估计的总体越精确,也就是所表示的总体平均的变化趋势越集中于准确值。作业中的第5,6两题就是为体现这种思想而设计的。
2.这一节课的目标是要弄清两个概念(、加权),三个公式(求平均值公式,求平均值的简化公式和求加权公式).
教学设计中,先从初中一年级代数课本的内容引出概念、计算公式及简化公式。所以很自然地转入新课,在介绍了概念后,紧接着对计算公式作出一般性的证明。
在加权一节,先列举一个易犯的错误,分析其错误原因,然后推导出公式。
《平均数》教案 篇二
教学目标:
1.知道平均数的含义和求法。
2.加强学生对平均数在统计学上意义的理解。
3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
教师重点和难点
:理解平均数的含义,掌握求平均数的方法。
教具/学具准备:
多媒体、长方形。
一、创设情境、激趣导入
1.谈话引入:(出示幻灯教师家的书架)
师:这是老师家的书架,咱们一起来看看。现在我的书架上上层有8本书,下层有4本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。你有什么办法?
2.感知
(1)学生思考,想象移的过程。
生:把上层书架上的8本书 ,拿2本放在下层书架上,现在每层书架上的书就一样多了。
(2)教师操作并问:现在每层都有几本书了?(6本)
(3)师:像这样把多的移给少的,解决问题的方法,我们给它起个名字叫:移多补少。
(4)师:你还有什么方法?
生:把上层书架上的书和下层书架上的书先合起来,再平均放在两层书架上,这样每层书架上的书就一样多了。
师:像这种把几个不同的数先合并起来,再平均分成这样的几份的到相同的数,解决问题的方法我们也给它起个名字叫:先合后分。
(5)师:现在每层书架上的书一样多了吗?
生:一样多了。
师:都是几本?(6本)
师:它是我们通过什么方法得到的数?(或者:谁来说一说我们可以通过什么方法来得到这个数?)
生:用的是移多补少和先合后分的方法。
师:像这样得到的数,它也有自己的名字—平均数。
师:所以6就是8和4的平均数。谁再来说说6是谁和谁的平均数?(生说)
(6)师:今天,我们就来认识一下“平均数”这个新朋友,好吗? (板书:平均数)
二、合作探究,深化理解
1、师:老师又新增添了一层书架,第三层书架上有几本书了?
生:第三层书架上有3本书了、
师:用我们刚才解决问题的方法,你能求出这三层书架上书的本数的平均数吗?
师:请拿出学具,来摆一摆,注意摆时要一一对应。
摆完把你的想法讲给你的同伴听一听。(学生活动,教师巡视。)
师:谁来说一说,你的方法。
学生汇报:
生:从8本书里拿出1个放在第二层4本书里,再从第一层拿出2本书放在第三层书里,这样他们每层就一样多了。
师:现在每层有几本书了?
生:现在每层有5本书了。
师:5就是8、4、3的什么数?
生:5就是8、4、3的平均数。
师:还有其他方法吗?
生:先把三层书合起来,在平均分成3层。
师:你能有算式表示表示出来吗?
生:(8+4+3)÷3=5(本)(师板书)
师:8+4+3表示什么?为什么要除以3?5表示什么?
(1) 找2-3人来汇报。
(2) 把这个算是各部分表示什么?同伴之间互相说一说。
2、师:下面我们来解决一个生活中的小问题。(出示统计图)
(1)师:仔细观察这幅统计图,你获得了那些数学信息?
生:小红收集了47个矿泉水瓶。小兰收集了33个矿泉水瓶。小亮收集了25个矿泉水瓶。小红收集了35个矿泉水瓶。
师:根据数学信息,你能提出一个跟我们今天学习有关的数学问题吗?
生:这一小队平均每人收集了多少个矿泉水瓶?
师:怎样求出这一小队平均每人收集了多少个矿泉水瓶?
师:你先独立思考一下,把自己的想法和同伴交流交流,再把自己的想法用算式表示出来。
学生活动,教师巡视。
组织汇报:
生:(47+33+25+35)÷4
=(80+60)÷4
=140÷4
=35(个)
答:这一小队平均每人收集了35个矿泉水瓶。
师:观察这个算式,哪部分体现了合?哪部分体现了分?哪个数是平均数?
生:47+33+25+35体现了合, ÷4体现了分, 35是平均数。
师:35是哪些数的平均数?
生:35是47、33、25、35平均数。
师:有用移多补少的方法的吗?
师:你们怎么不用这种方法呢?
生:数太大不好操作。
师:好,老师把这种方法放到了上了,我们一起来看一下吧。(放,学生体验一本一本的移比较麻烦)。
师小结:看起来,真像同学们说的一样,用“移多补少”的方法解决这个问题真是不方便。我们以后在遇到问题时,一定要根据不同问题选择合适的方法来解答。
(2)师:老师把平均数也放到了统计图中,请你用这个平均数与这四位同学实际的收集的矿泉水瓶个数比一比,你发现了什么?(看情况,让学生小组交流)
生:小红收集的个数比平均数多;小兰和小亮收集的个数比平均数少;小明收集的个数与平均数同样多。
师:它是每个人实际收集到的矿泉水瓶吗?
生:不是。
师:它只是反应了这组数据的总体情况。
三、应用知识,解决问题
师:看来同学们已经对平均数有了较深的认识,那我要出几道题考考大家。
1、判断并说明理由
学校篮球队队员的平均身高是160厘米。
(1)李强是学校篮球队队员,他身高155厘米,可能吗?(生判断。)说说你的理由。
师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一道题。
(2)学校篮球队可能有身高超过160厘米的队员吗?
师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数,那么。。。。
生:那就一定有人身高不到平均数。
师:没错。看来,平均数只反映一组数据的总体水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看小马过河的问题。
2、有一匹小马要过河,可是河上没有桥,河边有个告示牌:平均水深120厘米,请注意安全!小马想:我的身高是140厘米,比平均水深要高,一定能安全过河。
师:同学们,你们说小马能安全过河吗?和你的同伴讨论讨论。
学生们判断并说明理由。
师:看来小马能否安全过河是不确定的,小马听了你们的分析,一定会谨慎从事的,谢谢同学们。
3、在一次采摘活动中,小明摘了52个苹果,小刚摘了56个苹果,小红和小兰共摘了84个苹果,他们平均每人摘了多少个苹果?(列 综合算式)
学生独立解决,集体订正。
四、小结:通过今天的学习,你有哪些新的收获?
五、师总结:同学们,刚才我们利用平均数解决了这么多的问题,走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。
三年级数学《平均数》教案 篇三
一.目标和目标解析
1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数。教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题。2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度。3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性。通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性。
二.教学过程设计
活动一:创设情景,建立模型,揭示概念
问题
1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义。 在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:
(1)谈谈表格中“86分”所反映的实际意义。
(2)求这两个班的平均成绩,并和同伴交流你的计算方法。
预设:问题(2)可能会出现下面两种解法:
引导学生对比、分析、讨论,初步理解权的意义。设计目的:
问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义。
问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫。
活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维。本活动中,教师应关注学生:
①参与数学活动的主动性和数学思维的深刻性;
②实际问题中体验平均数的统计意义和初步了解权的意义;
③体会算术平均数与加权平均数的区别与联系。
学生归纳:
1.平均数反映的是数据的平均水平,;
2.“权”反映了数据的相对“重要程度”;
3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数。问题2 某市三个郊县的人数与人均耕地面积如下表:
求这个市三个郊县的人均耕地面积 (精确到0.01公顷).
追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?
追问2: 0.
15、0.21和0.18这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?
设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系。活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法。学生归纳:
(1)上例中15,7,10分别是0.
15、0.
21、0.18三个数据的权,平均数0.17称为三个数0.
15、0.
21、0.18的加权平均数,反映三个郊县人均耕地面积的平均水平。
(2)若已知n个数及其对应的权,则这n个数的加权平均数可求。活动二:实例分析,指导应用,体验概念
1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数。思考:各项的权分别是多少?如何计算植树的平均棵树?
2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:
(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?
问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?
设计意图:在变式中理解权的含义。
问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识。
设计意图:在系统中整体理解数据、权和平均数。通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响。此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用。
问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?
设计意图:进一步体会数据权的不同表现形式。 (自主合作,共同比较,交流分析,体会权的“掌控”能力。)
活动三:拓展创新,我来决策,感悟概念 一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:
假如你是该公司老总,请发挥你的才智,给每项成绩赋予适当的权数,并通过计算进行选拔。设计目的:创设情景,为学生创造参与数学活动的机会,亲身经历数学活动的过程,积累数学经验,在感受数学知识的同时获得成功的体验,强化数学的应用意识,增强学数学的积极性和热情;借助于Excel的数据处理功能,展示不同的权数下的不同结果,深入体会权的意义和作用。活动方式:猜想──设计──计算──体会──交流。
活动四:归纳小结,自主反思,优化概念
1.从下面的关键词中任选一个或几个,展示自己的演说才能,谈谈你本节课的收获或体会:
知识、方法、反思、猜想、交流、愉快、困惑、生活
2.布置作业:教科书P127页,练习第1题、第2题。设计目的:通过回顾和反思,让学生对数据的权的作用和加权平均数的意义有进一步的认识和理解,通过学生归纳和教师释疑,让学生优化概念、内化知识,同时让学生看到自己的进步,增强学生运用数学解决实际问题的信心,促进形成良好的心理品质。活动方式:反思学习过程,归纳并形成知识体系,交流体会和感受。三.目标检测设计(时间:15分钟;满分50分)
(一)填空题:(每题5分,共20分)
1.在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分。则这5名同学的平均成绩:= .
2.某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩:= .
3.从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤 元.
4.若m个数的平均数是a,n个数的平均数是b,则这m+n个数的平均数是 .
(二)解答题:
5.(20分)某市去年7月下旬各天的最高气温统计如下:
(1) 计算该市七月下旬的平均气温。(5分) (2) (1)中所得到的平均数叫做
35、
34、
33、
32、28这5个数的 平均数。(5分)
(3) 在上面的5个数据中,35的权是 ,34的权是 ,28的权是 .(5分)
(4) 如果把35和28的权调换一下,平均气温是多少?与(1)的计算结果相比较发生了怎样的变化?由此你认为权在实际问题中的重要意义是什么?(10分)
6.(10分)某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验。小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分。(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?
(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少?
《平均数》教案 篇四
一、导入新授:
通过师生谈话引出两个小组投球比赛成绩的数据。
二、新授:
1、出示投球记录:
第一组 第二组
姓名 投中个数
刘杰 9
杨立 8
孙梅 5
王丽 3
丁鹏 5
姓名 投中个数
张华 8
王云 7
李英 6
赵明 7
2、比较哪组的成绩好。
(1)让学生进行讨论,学生可能会说出不同的比较方法和想法,重点引导学生考虑怎样比较才是"公平"的。
(2)如果学生不能说出平均每人投中的个数,教师可以作为参与者提出并让学生讨论。
3、学生试做。
4、交流计算结果,并根据平均数比较两组的成绩,说明哪组的成绩好。
第一组(8+7+6+7)÷4 第二组(9+8+5+3+5)÷5
= 28÷4 =30÷5
=7(个) =6(个)
7>6
答:第一组成绩好。
三、求平均数:
1、下表是亮亮家一周丢弃塑料袋的情况。
星期 一 二 三 四 五 六 日
个数 1 3 2 3 2 6 4
2、算一算:平均每天丢弃几个塑料袋?
(1)让学生观察统计表,说一说得到了哪些信息?
(2)自己试做。
(3)交流计算的方法和结果。
3、议一议:求出的"3个"是每天实际丢弃的塑料袋的个数吗?
四、做一做:
先让学生想一想,再动手操作。教师注意观察学生的方法。交流操作的过程,有意识的指几名学生说说是怎样想的、怎样做的。
平均数教学设计一等奖 平均数教学设计优质课评课 篇五
教材第90、第91页的内容及第92页做一做
1、理解平均数的含义,初步学会简单的求平均数的方法
2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用
3、感受平均数在生活中的应用,增强探索数学规律的兴趣。
理解平均数的含义,掌握求平均数的方法,“移多补少” “先合并再平分”的实际意义和应用。
初步学会简单的数据分析,进一步体会统计在现实生活中的作用。
多媒体课件教学过程:
一、情境导入
1、谈话引入
师:同学们,喜欢吃桃子吗?老师这有16个桃子,我把它们分给2个同学看,怎样分才能让他们一样多。
2、引入“平均数”师:每人都是8个桃子,8就是一个平均数。这样分两个同学就一样多了。(出示课题:平均数)
同学们在日常生活中还听到或者用到平均数?(平均身高,平均成绩,平均速度,平均产量等等。
二、自主探究,解决问题
1、初步理解平均数的意义和求平均数的方法。
(课件出示教材第90页例1情境图)
师:同学们请看这张图片,这是环保小分队的同学们收集饮料瓶的统计情况,在这张统计图你获得了哪些数学信息?我们要解决的问题是什么?
师:你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?学生汇报交流
师:这个小组平均每人收集了多少个饮料瓶?(13个)
师:大家都同意这个算法吗?13是怎么来的?
“移多补少”的方法。
指名学生说自己用的方法,结合学生的口述和学生动手操作,用课件演示“移多补少”的过程。
师:这种方法对吗?为什么要把小红的一个给小兰,把小明的两个给小亮?(为了使他们每个人的瓶子数量同样多)能给这种方法起个名字吗?(指名学生试着回答总结)
师:像这样把多的饮料瓶移出来补给少的,使得每个人的饮料瓶的数量同样多,这种方法叫“移多补少”,(板书移多补法)这里平均每人收集了13个,这个“ 13”是他们真实收集到的饮料瓶吗?(不是)而是4个人的总体水平。
师:还有不一样的方法吗?学生口述算理并说算式,老师板书。
师:像这样先合并然后再平均分的方法同叫“先合后分法。”无论是通过移多补少还是先合后分,其目的只有一个,就是使原来几个不同的数变得同样多,这样得到的数就是这组数据的平均数。13就是这4个数的平均数,这也是我们今天要学习的内容。
(板书课题:平均数)它引导学生利用“移多补少”或“平均分的意义”理解,平均数并不是每个学生收集到瓶子的实际数量,而是“相当于”把4个学生收集到的瓶子总数平均分成4份得到数,可能同学们收集到的比这个数量小,也可能比这个数量大。平均数是为了代表这组数据的总体水平而创造出来的一个“虚拟”的数。
2、内化拓展、进一步理解平均数的意义和计算方法。
师:现在让我们一起来看看体育小组的活动(课件出示照片和91页例2情景图——————踢毽比赛)对于比赛,你们最想知道什么?(哪个队赢)那就是想知道哪个队的成绩好?现在老师让你们当裁判,一定要公平公正地裁决。
(1)出示表一:(男女生各一名同学)师:如果你是裁判,你认为哪个队赢?你是怎么知道的?(19>17)
(2)出示表二:(男女生各加入三名同学)师:现在哪个队赢了?你怎么知道?(指名学生说是通过计算总成绩知道的)现在男生算你们队的成绩,女生算你们队的成绩。
通过计算得出:68<76(女生队获胜)引导学生体会,在人数相同的情况下,可以用求总数的方法比较输赢。也可以求平均数的方法。
男生:68÷4=17(个)
女生:76÷4=19(个)17<19(3)出示表三:(男生加入一名同学)
师:看来女生队暂时领先,男生队还有一名队员要加入进来,请各位裁判独立思考后给出最终的裁定?并说出你是怎么想的?
预设:比总数男生对获胜,比平均数合理。
师:怎样列式解答呢?(学生口述,老师板书):男生队平均每人踢毽个数,女生队平均每人踢毽个数:(19+15+16+18+17)÷5,(18+20+19+19)÷4 =85÷5 =76÷4 =17(个)=19(个)17<19。答:女生队的成绩好些。
三、探究结果,回顾小结
1、体会平均数的意义。
师:回忆一下,我们学了什么?(预设:平均数)用自己的话说一说,平均数是一个什么样的数?(引导学生用自己的话说出求平均数的意义和作用。)
①当个数不同,用总数量比较结果时有失公平,可以用两组数据的平均数来比较。
②平均数能较好的反应出一组数据的总体情况③平均数是一个虚拟的数。
2、回顾求平均数的方法。
①把多的瓶子移出来,补给少的,使得每个人的瓶子数量同样多,这种方法叫移多补少。
②用先合后分计算的方法求平均数时,平均数=总数量÷总份数
四、联系实际,拓展应用
1、做一做(课件出示)学生独立思考解决,并指名学生板演并说方法。
2、判一判(课件出示)指名学生读题,独立思考后判断并说理由。
3、说一说(课件出示)学生小组交流并汇报。
五、实践作业、课后延伸
参照十岁儿童身高正常,测量本班同学的身高,判断一下同学们的身高是否正常。
男生:140cm
女生:141cm)
平均数较好地反映一组数据的总体情况
方法:移少补多(有局限)找基数,分多余数
公式:总数÷份数=平均数
特点:最大值﹥平均数﹥最小值;平均数≠实际数。
三年级数学《平均数》教案 篇六
学习内容:
教材43页例2,练习十一第4、5题
学习目标:
1、能熟练地求平均数
2、会根据平均数简单地分析问题
3、知道平均数能较好地反映一组数据的总体情况
学习重点:
根据平均数简单地分析问题
学习难点:
比较平均数,得出新的信息
学习准备:
统计图、记录卡、小黑板
学习流程:
一、导入
什么是平均数,怎样求平均数?
二、学习交流
1、课件出示例2图片
(1)从图片上你知道了哪些信息?
(2)哪个队要高一些?
(3)怎样才能知道哪个队高一些?
点拨:观察事物不能光靠眼睛看,还要科学地算一算
2、出示欢乐队和开心队身高记录表
说一说你知道了哪些信息?
小组内算一算两个队的平均身高,交流展示自己的算法
(148+142+139+141+140)5
=_____5
=_____(厘米)
(144+146+142+145+143)5
=_____5
=_____(厘米)
3、比一比
通过计算的结果看出( )了要高一些
点拨:平均数能较好地反映一组数据的总体情况。
4、出示练习十一第4题
(1)从统计图上你知道了什么?
(2)哪种饼干第一季度月平均销售量多?多多少?
(3)计算平均数,比一比
5、猜测
(1)哪种饼干销量越来越大?
(2)分析原因。
6、从统计图中你还得到什么信息?
三、展现提升
1、展示自己的学习收获。
2、交流算法。
3、提问、补充。
四、达标测评
练习十一第5题
五、总结归纳
1、通过今天的学习,你有什么收获?
2、通过求平均数,我们还可以得到很多新的信息
平均数 篇七
教学内容:教科书第42页例1教学目标:1、使学生理解的含义,初步学会简单的求的方法。2、培养学生能够运用所学知识,合理、灵活地解决一些简单的实际问题。教学准备:多媒体课件教学过程一、创设情景,引入课题。(1) 教师(幻灯片2):同学们,春天来了,学校组织大家去植树。我们班共有7名同学参加了这次活动,这是他们植树的情况,(幻灯片3二组统计图),从图中你知道了哪些信息?(指名说并把每人的棵数板书在黑板上)(2) 比一比哪一组植的树要多一些?(指名)第一组有几人,第二组呢?,你们认为这样比公平吗?为什么?在我们的生活中,经常遇到这样的事情,比如说三(1)和三(2)班人数并不相等,那我们就没有别的办法比较出这两个班某一项成绩的高低吗?你有没有更好的招?(指名说可能有学生说用比的方法)(3) 师:对,因为两组人数不相等,不能用总棵数比,用每组平均每人植的棵数来比,比较合理,这就是我们今天要学习的问题。(板书:)二、教学例1,寻求规律(1)(幻灯片4第一组统计图)面对着这个统计图你想提出什么问题?你们想知道的东西真多哇!我们的陈田、张然同学有点不高兴了,你们知道为什么吗?(他们植的太少了)是啊,我们用什么办法帮助他们呢?(把万宇和卢明的给他们)(一样多)我明白你的意思了,你是说让他们每人植的树一样多,对吗?换句话说就是。。。。。求他们平均每人植了多少棵树?(2)师:你们能先猜一猜,这个数大约在哪两个数之间呢?(11-15)它会不会大于15或小于11呢?为什么?(因为是移多补少得到的所以不会)。(3)师:好了,这样吧,你们都把你估计的那个数悄悄地藏在心里,好吗,藏好了吗?估计的准不准有什么办法吗?我建议同学们先以4人为一个小组讨论一下,用什么办法才能使4个人植的树一样多,也就是同学们说的平均每人植树多少棵?请同学们从抽屉内拿出老师为你们准备的图纸,你们可以按自己的意图任意在纸上做记号或计算都行,看哪个小组想的方法最多,开始!(以4人为一个小组进行,教师巡视,收集作品)(学生交流)师:胡广臣请你说说好吗?生:把万宇的一棵给陈田,把卢明的两棵给张然,这样他们每个人的就一样多了!(边说边在投影仪上展示作品)(4)动画演示移多补少的过程(幻灯片4)老师小结:用移多补少的方法,把万宇的一棵移给陈田,把卢明的两棵移给张然,最后平均每人都有13棵。(5)演示先合后分的计算过程师:还有不同的方法吗?(指名说),对,还可以用先合后分的方法,“合”就是求出4个人一共种了多少棵树?“分”就是把种的总数再平均分成4份,求每一份是多少?也就是相当于,把他们植的树平均分成4份(幻灯片5电脑显示)如果我们列算式该怎么列,请大家试一试。(学生计算,教师巡视)(指名说计算过程,教师板书后再看幻灯片6显示过程)(14+12+11+15)÷4=52÷4=13(棵)(5)师:刚才我们用不同的方法得到了同样的答案,无论选择哪一种方法都是可取的,我非常佩服一次就能猜得那么准的同学,说明这些同学思考问题有根有据。我也佩服那些一次就计算得很准确的同学,他们都应该受到大家的表扬,给他们掌声。(稍停顿指板书)这里的“13”是什么意思?是他们每个人都种了13棵吗?生1:是每个人种的数。师:我请万宇同学说你种了几棵?(我种了14棵)你的同学说你只种了13棵,他说你们每人种了13棵呢?(我知道了他是把数平均分)怎么平均分,你多的那一棵哪里去了?(就是给少的同学了)陈田请站起来,你种了几棵?(我种了12棵)那你的同学说你种了13棵,你那一棵是哪里来的?(是其他的剩下几个给我,变成我的了)那你的意思是说把多的给了少的,少的说,给我吧,我和你们一样多了,用今天的新词来说就是。。。。。。(平均分)平均了对吧,同学们的理解和感受非常到位,那我告诉大家,13就是14、12、11、15这一组数的。师:叫什么名字?师:这个它就比较好的反映了这一组数据的一个总体水平,就是同学们刚才讲的,平均每人植树多少棵?这个它就在哪两个数之间转悠、转悠?现在你们能用同样的方法算出第二组的吗?看谁算得最快?(指名说并板书 计算过程)第二组平均每人植树多少棵?(14棵)第一组呢?哪一组的要大些?(第二组)那么我们就可以宣布第二组同学获胜,行吗?祝贺你们!谁再来说说这个“14”表示什么意思?三、开展活动,理解的含义和计算方法(5分)师:同学们就在我们需要的时候,他来了!想一想,在过去的学习和生活中,你在哪里碰到过他,什么时候需要算?(指名说)为了让同学们更好的理解,下面我们做一个称体重的活动,我点3名女生和2名男生上来,其他同学同桌一人记数,一人计算。第一组计算女生的平均体重,第二组计算男生的平均体重,每一组选1名代表到黑板上配合演示。听明白了吗?我来报数,(指名上前称体重,老师报数)交流。女生平均每人重多少千克?男生呢?为什么算女生的平均体重的时候要除以2而男生的要除以3?(指名说)如果我们要求5个人的平均体重又应该怎么算?(指黑板两组数)所以说总量和份数要对应。看到这两组数你明白了什么?是啊由于男女生性别的差异,男生的体重普遍比女生要重一些。师:看来的作用还真大呢!你们再来看这里的一个信息。四、巩固练习(10分)屏幕显示(幻灯片)(1)(课件出示)2004年小刚家各季度用水情况统计表 单位:吨一季度二季度三季度四季度16203025平均每月多少吨?(1)(16+20+30+25)÷4(2)(16+20+30+25)÷12(3)(16+20+30+25)÷365师:一季度用了多少吨?二季度?三季度?四季度?生看图回答师:现在我们想要求“平均每月用水多少吨?”莫急,不需要计算,老师在这里给了三个不同的算式,每个同学独立思考,拿出你个人的意见,要想求“平均每月用水多少吨?”你是选择1、2、3哪个算式呢?想好了,用手势告诉大家!预备,开始!生用打手势示意自己选择哪个答案。大多数同学选1。师:人家有选2的,别着急!请选2的同学上前同学们选几(生:1)选1的出两个代表(请生上前)一场辩论会马上就要开始了,到底选1对,还是选2对,我也糊涂了。你们能不能互相问问问题,好吗?谁先开始?两队论:生:请问题目中问的是什么问题(师:回答)生:题目问的是平均每月用水多少吨(师:接着问)生:那一个季度有多少个月?生:一个季度3个月?(师:那一年呢,接着问)生:那一年有多少个月?生:12个月生:既然有12个月,为什么要除以4呢(师:不除以)而不除以12呢?生:因为它有4个季度,所以除以4 生:因为问的是平均每个月(师:谁要你求?生:谁要你求每个季度啊师:那你同意就可以到那边去了师:是啊,人家要你求平均每个月的,你们说应该除以几啊?(12)我同意大家的意见,应该除以12,他们除以4了,有没有道理呢?那么你们求的是什么?生:平均每个季度用水情况师:是吧,可惜人家根本就。。。。。生:人家根本就没有问平均每个季度用水多少吨师:你除以4,求的是平均每个季度的,除以12个月,是平均每个。。。。。除以365天是平均每。。。。。。(生一起回答)看来找准份数是非常重要的。师:明白了吗,是几个人平均每天的呀(3个人)师:老师告诉你,如果想求平均每人每天哪,再除以3,李老师帮你们算出来了。屏幕出示(小刚家平均每人每天用水量约88千克)(严重缺水地区每人每天用水量约3千克)老师拿出用塑料袋装的3千克水,让学生感受它的分量,进行思想教育。师:面对这幅图画,你们最想说的是什么?生:我觉得他们一天用的水非常多。师:那我们就去指责小刚吧,怎么那么浪费水呢?你们最想说的一句话是什么?生:我们最想说的一句话是他们最好平均每天少用一点水。师:那你去批评他们吧!你想说什么?生:我想说,他应该把洗衣服、洗澡的水留下来冲厕所。师:那你就去说他吧!他应该怎样!还有没有想说别人的?生:我想对他说,小刚,我希望你捐一点水到严重缺水地区去。师:你们知道我最想说的是什么吗?师:节约用水,从我自己做起!五、解决问题(3分)师:你们能用来解决实际生活中的问题吗?屏幕出示画面小明会遇到到危险吗?师配以画外音:一条弯弯曲曲的小河,穿过了一片土地,平均水深110厘米,你们看。谁来了?小明来了!哈哈,我不会游泳,但是我告诉大家,我的身高可是135厘米呀,如果我在这条河里面玩耍,我有没有可能会遇到危险?师:为什么有可能?你知道平均水深是什么意思吗?生:说明有的地方很深,有的地方很浅。但是平均起来是110厘米。师:如果小明到了?生:到了很深的地方,他就会淹下去。师:你们听懂她的话了吗?六、课堂小结(2)师:好的同学们,不知不觉,就要下课了,你们告诉我,你们学的开心吗?你们有收获吗?还有遗憾的地方吗?(指名说)李老师也有收获,我发现我们三(5)班的同学表现都很出色,有的同学善于思考问题,有的同学集体合作意识强,有的同学善于倾听别人的发言,这都是很好的学习习惯,我相信,你们以后会做得更好。最后让我们把最热烈的掌声送给在座的每一位同学吧!(好),下课!
《求平均数》教案 篇八
师:(看着生2)你能给你的这种方法取个名字吗?
(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)
师板书:算术法 移多补少法
师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?
(生摇头,大胆学生说:除不尽的)
师:(乘机)那你们有什么好办法?
生:用我们学过的“估算”
师:好,那你们试试吧!(指1名板演)
板书:(78+83+82+83)/4~81
师:从两组平均数83和81中,你知道了什么?
生:第一组平均数大,所以还是第一组总体水平好一些。
3、理解平均数的意义
师:第一组的83表示什么?你怎么理解“83”这个数?
(引导学生明白:“83”是个“虚数”,第一组的。83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)
师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?
生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。
生2:平均数,因为有了你,世界上才会太平
4、沟通平均数与生活的联系。
师:在平时生活中,你们见过平均数吗?
生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数。
(三)、联系生活,拓展应用
1、多媒体呈现:下面是某县1999—20xx年家庭电脑拥有量的统计图。
图略:1999年350台,20xx年600台,20xx年1000台,20xx年1600台,20xx年2500台
(1) 求出这五年来,平均每年拥有电脑多少台?
(出现算术法和移多补少法两种方法)
(2) 估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?
(3) 从图上你还知道些什么?
2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨
师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?
(1)(16+24+36+27)/4
(2)(16+24+36+27)/12
(3)(16+24+36+27)/365
a、生举手表决
b、辩论交流得出正确答案(2)
c、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数
(四)、总结评价,提高认识
师:通过这节课的学习,你有什么收获?
师:你觉得这些知识对你以后生活或学习有什么影响或作用?
板书设计
求平均数(算术法 移多补少法)
第一组:(82+86+81)/3=83 第二组:(78+83+82+83)/4~81
当人数不相等,比总数不公平时,我们就得看“平均数”。
“平均数”是个“虚数”(大于平均数 ;小于平均数 ; 等于平均数)“平均数”可用来预测未来发展趋势。
平均数教学设计一等奖 平均数教学设计优质课评课 篇九
人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、例2
多媒体课件,姓名笔划数统计表每人一张。
平均数作为统计知识中的一个重要内容,是常用的一种“特征数”。教材中所介绍的是一堂求算术平均数的课,从基础知识来看,一是理解平均数的意义;二是掌握求平均数的方法。前者属于数学思想,后者属于数学方法。对于本课我从统计的角度出发,在考虑这节课“教什么”的问题时,根据教材特点,把教学目标定位为:重点教学平均数的意义,其次才是求平均数的方法。在考虑“怎么教”的问题时,首先从学生方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自身已有的知识和经验主动地加以建构。再根据教材特点,我主要通过创设一定的问题情境,使学生在解决问题中深刻感悟平均数的意义,从而更好地掌握求平均数的方法,并能灵活应用,解决实际问题。具体如下:
(一)教学目标:
1、让学生在具体的情境中经历探索、思考、交流等数学过程理解平均数的实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问题。
2、让学生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,感受计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的联系。
(二)教学重点:理解平均数的意义和求平均数的方法。
(三)教学难点:理解平均数的意义。
四、教学流程设计及意图
教学流程
设计意图
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向大家介绍介绍。(学生高声的介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示自己的姓名。
师:能完成这表格吗?(学生数一数,完成表格)
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁制作的最漂亮。(学生动手制作表格)
师巡视指导,搜集、选择教学信息。学生完成后作简单交流。
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察老师姓名的笔画数,你能提出什么数学问题?
预设生(1)每个字笔画数的多少?
(2)比多少?
(3)发现数字间的规律。
(4)求总数?(师追问:你是怎样算出来的?)
师:知道了笔画数的总数,你现在又能解决什么问题?
预设生:可以求出平均每个字的笔画数。
师:平均每个字的笔画数,你是怎么得来的?
预设生(1)通过计算(10+11+16)÷3=12?1
(2)通过移多补少得到。
2、在对话交流中明晰概念
师:袁老师的姓名平均笔画数12画,这又表示什么?
预设生(1)表示袁铭璟三个字笔画数的平均水平。
(2)表示老师姓名笔画数的一般水平。
师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?
(学生小组讨论,教师巡视指导。讨论完毕,开始全班汇报交流。)
预设生(1)有关系的,是他们的中间数。
(2)平均笔画数比笔画最多的少一些,比笔画最少的多一些。
(3)平均笔画数在笔画最多的数字与笔画最少的数字之间。
(4)平均笔画数就在这三个字笔画数的中间位置。
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画最多的那个,也不是反映这三个字中笔画最少的那个,而是处在最多和最少之间的平均水平。我们把12叫做袁老师姓名笔画数的--平均数。(板书课题)
师:请同学们算出自己姓名的平均笔画数。(师巡视指导,选择、搜集有价值的信息。)师生交流计算的方法与结果。
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表。(一学生姓名两个字,一学生姓名三个字,一学生姓名四个字。)
师:比较他们姓名中每个字的笔画数,你有什么方法?
预设生(1)比笔画数的总数。
(2)比平均笔画数。
(让学生先在小组内讨论,然后组织全班汇报交流。)
预设生(1)比总数好比,能够很清楚明了的知道谁的姓名笔画数多,谁的姓名笔画数少。
(2)比平均数公平,因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数的话字数越多,笔画数相对就会多起来,这不公平,而平均数却能反映每个字笔画数的总体情况,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流。
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以怎么比呢?预设生:既可以用平均数来比,也可以用总数来比。
师:同学们做得很好,在比较时考虑到了字数的多少,公平与否。
出示(1)文成县实验小学四年级平均每班有学生56人。
(2)四(3)班上学期期末考试数学平均分是81分。
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?
(学生小组讨论,然后全班汇报交流。)
预设生(1)56是四年级总人数除以班级数得来的,表示四年级每班人数的平均水平,不一定每班就是56人,但可以预测每班的大致人数。
(2)略
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学,身高分别是148厘米、142厘米、139厘米、141厘米、140厘米。他们的平均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由。
预设生的估计数在139--148之间,如果超出这个范围,则要组织讨论所猜的数值为什么不可能,从而加深对平均数概念的。理解。
学生列式计算,教师巡视指导。选一个学生板书列式,(148+142+139+141+140)÷5师:你们知道这位同学是怎么想的吗?
预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。
学生计算,注重计算方法的选择。然后交流。
师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交流。
(学生小组合作,交流看法,教师参与讨论。)
学生汇报后,教师简单小结求平均数的一般方法,总数÷份数=平均数。同时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提升,留待练习课中予以落实。
《平均数》教学反思
《新课标》强调“数学应用于现实生活,要使学生体验到数学就在我们身边,进一步感受到数学与生活的密切联系。”这就向我们的教师提出了挑战:必须善于挖掘生活中的数学题材。 本课教学中,我一上课就再现“神六”成功发射的辉煌场面,一下子拉近了数学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感。而最后的总结可谓“经典”,将学生从课堂引向生活,不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。
突出主体地位,创造了自然和谐的环境
在课堂教学中,教师应该充分尊重学生,给他们以发现问题、解决问题的机会,使教学活动真正面向全体学生,使学生人人得到发展。
本课中,在创设问题情景、呈现例题的表格之后,我让学生根据表格中的数据自己提出数学问题。提问题的过程,就是培养学生的主动思考、主动发现,用数学的眼光看待周围的事物的过程。同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。在复习的过程中,由学生自己提出今天研究的内容:“两次平均每分钟拍摄多少张?”这样学生感到:今天学习的问题是由我提出来的,心里充满了骄傲和自豪。
尊重个体差异,设计了满足不同需求的练习
家庭环境、特定的生活与社会文化氛围,形成了学生的差异。教师在教学中应持一种客观的态度,使不同的学生得到不同发展,最大限度地满足每一个学生的发展需求,对有特殊数学才能和爱好的学生可以为他提供更多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算的例题原型的还原,又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。在练习的方式上,既有笔算题、又有估算题,更符合《新课标》提出的培养学生估算能力这一宗旨,可谓匠心独具,令人流连。
思维深度延伸,激活了学生内在的发展潜能
在求平均数应用题中,学生常常将两个平均数相加除以2,这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错误,选择出正确答案就行了,但我对题目进行了深度挖掘,引导讨论:
1.什么样的情况下,可以(142+140)÷2? 2.假如男生人数多一些,全班身高的平均数比141大还是小?为什么?3.假如女生人数多一些,全班身高的平均数比141大还是小?为什么?4.再让学生比眼力,猜测五年级四个班哪个班学生的平均身高最高?
2.这样深入挖掘,有意识地对学生思维进行深度引领,将一条简单的选择题进行多次讨论,让学生享受到数学思维带来的乐趣。
《平均数》教案 篇十
教学内容:
小学数学第六册第92~94页。
教学目标:
知识与技能:
1、从生活实际中体会平均数的意义,建立平均数的概念。
2、在理解平均数意义的基础上,理解和掌握求平均数的方法。
3、初步感受求平均数的作用。
过程与方法:
联系学生实际,培养学生选择信息、利用信息的能力;培养学数学、用数学的意识及自主探索、合作交流的意识和能力。
情感态度价值观:
激发学生主动参与的热情,培养学生主动探究、合作交流的精神。
教学重点、难点:
理解平均数的意义;掌握求平均数的方法;体会求平均数的作用。
教学过程:
一、创设情境,提出问题
昨天的作业,张康、朱星宇、施逸婷做得最好。今天老师带来些铅笔想奖给他们。(三人上台领奖,并告诉同学各自得到的铅笔的支数。)板书:张康11支、朱星宇7支、施逸婷6支。
你们觉得公平吗?怎样才能公平?
学生讨论,指名汇报。
(从1张康手中拿2支给施逸婷,再从张康手中拿1支给朱星宇。这样每人都是8支。)
很好。谁能给这种方法取个名字?(“移多补少法”。)
(先把三个人的铅笔全合起来有24支,再平均分给这3个人,这样每个人都是8支。
这种方法也很好!我们也给它取个名字。(“先合再分”)。
刚才我们用不同的方法,都能使这三个人铅笔的支数相等,都是8。
教师指出:这里的“8”就是“11、7、6”这三个数的平均数。板书课题:平均数。
昨天蔡裕杰同学的作业也很有进步,现在我想也奖给他铅笔,怎样才能让他们四个人得到的铅笔支数相等?(学生上台演示,每人得到6支。)
提问:这里的“6”就是“11、7、6、0”这四个数的什么?
通过我们刚才的讨论,你觉得什么是平均数?
小结:已知几个大小不等的数,在总和不变的条件下,通过把多的移给少的或者先把它们合起来再平均分,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
二、寻找方法,解决问题
说到平均数,老师想起前不久学校举行篮球赛的时候,五(2)班女男生之间发生的一次争执。
为了备战篮球赛,五(2)班男子篮球队和女子篮球队之间先进行了一次投篮比赛。每人投15个球。这是他们投中个数的统计图。出示两幅条形统计图。
(略)
这两幅统计图能看得懂吗?从这两幅统计图上你能知道些什么信息?
投篮比赛结束了,男子篮球队队员说男生投篮准,女子篮球队队员说女生投篮投得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男子篮球队整体水平高一些,还是女子篮球队整体水平高一些?。
指名汇报,说明理由。
(有3名男生都投中得比女生少,所以女生投得准一些)
这是你的意见,有不同的意见吗?
(女生一共投中28个,男生一共投中30个,男生投得准一些)
可是男生有5个人,女生只有4个人啊!还有不同的意见吗?
(去掉一个男生。)
去谁合理呢?能去吗?
(应该求出女男生投中个数的平均数,然后再进行比较)
有道理,他们两个队的人数不同,所以我们不能一个人一个人的比较,分别求出他们投中个数的平均数,用平均数来体现他们投篮命中的整体水平,好办法!掌声鼓励。
那我们应该怎么求他们的平均数呢?先来求女生投中个数的平均数。
观察女生投篮成绩统计图,小组讨论,代表汇报。
(将徐丹多投中的两个分一个给王戈,分一个给赵越,这样,她们每个人都是投中了7个,也就是女生投中个数的平均数是7个。)
不错,方法很简洁,移多补少法。有不同的方法吗?
(先求出四个人投中的总个数,再求出平均每人投中的个数。)
半数:6+9+7+6=28(个)
28÷4=7(个)
他用的方法就是——先合再分法。
看来,大家都非常聪明,男生平均投中的个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
现在你能帮五(8)班的同学解决他们争论的问题了吗?
(女生平均每人投中7个,男生平均每人投中6个,所以女生投得更准一些。)
观察统计图,女生平均每人投中7个,(用直线画出7的水平位置),提问:平均数7比哪个数大,比哪个数小?我们再来看看男生投中的平均数6是不是也有这样的特点?(用直线画出6的水平位置。)
小结:平均数的大小应该在最大的数和最小的数之间。此外,一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。
三、应用方法,解决问题
刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,一起来看一看。
请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。
挑战第一关:“明辨是非”
(1)一条小河平均水深1米,小强身高1、2米,他不会游泳,但他下河玩耍池肯定安全。( )
(2)城南小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()
(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。( )
学校篮球队可能有身高超过160厘米的队员。( )
(4)四(3)班同学做好事,第一天做好事30件,第二天上午做好事12件,下午做好事15件,四(3)班同学平均每天做好事的件数是(30+12+15)÷3=19(件)。( )
挑战第二关:“合情推测”
四(2)班第一小组同学身高情况统计表
学号 12 3 4 56
身高(厘米)131 136 138 140 141142
明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?
平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。
那么我们应该怎么求他们的平均数呢?
指名列式,老师告诉答案为138厘米。
由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?
你想了解我国四年级同学的平均身高吗?
出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?
四、学生看书,质疑问难
五、全课总结,交流收获
通过今天这节课的学习,你有什么收获?
六、布置作业,检查反馈
《求平均数》教案 第十一篇
总课时:4课时使用人:
备课时间:第十五周上课时间:第十六周
第4课时:8、3利用计算器求平均数
教学目标:
知识与技能:根据给定信息,会利用计算器求一组数据的平均数,并会进行数据的收集、加工与整理。
过程与方法:初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。
情感态度与价值观:通过使用计算器求平均数的探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。
教学重点:用计算器求平均数
教学难点:按键顺序
教学准备:同种规格的计算器
教学过程
第一环节:情境引入(5分钟,学生遇到困难,亟待解决)
内容:展示引例:20xx年第一季度我国各地区农村家庭平均每人现金收入情况表:(单位:元)
北京1692.2上海3075.6天津1254.5河北584.4
山西420.5内蒙古596.2辽宁875.4吉林705.5
黑龙江746.8江苏1354.2浙江1891.1安徽520.6
福建972.2江西575.1山东831.9河南426.3
湖北582.2湖南685.7广东1065.5广西554.6
海南699.3重庆523.2四川538.4贵州316.4
云南411.6西藏254.4陕西441.0甘肃328.4
青海337.8宁夏458.1新疆340.3
请计算这组数据的平均数,在计算过程中,你体会到什么困难吗?
显然,当一组数据比较大且比较多时,用笔计算平均数较麻烦,因此,需要一个帮手—计算器,这节课就来学习用计算器求平均数。
第二环节:活动探究(15分钟,小组合作交流)
内容:学生分组(拿同类型计算器的同学分在一起)活动探究,看哪个小组做得好:
(1)估计一下自己课桌的`宽度,并将各组员的估计结果统计出来(精确0.1厘米)。
(2)用计算器求出估计结果的平均值,你是怎么做的?与同伴交流。
在学生分组合作探究的基础上,全班总结交流不同类型的计算器求平均数的一般步骤,教师根据反馈的信息,及时进行评价。
(3)用尺子量一量课桌的宽度,看看大家估计的结果怎么样。
各组派代表谈谈本组估计结果的准确度,对准确度较高的小组进行表扬,并评为优秀小组以资鼓励。
第三环节:运用提高(15分钟,教师引导,全班交流)
内容:1.利用计算器计算下列数据的平均数:
12.8,12.9,13.4,13.0,14.1,13.5,12.7,12.4,13.9,13.8,14.3,13.2,13.5。
2.观察下图1,利用计算器计算上海东方大鲨鱼篮球队队员的平均年龄。
3.英语老师布置了10道选择题作为课堂练习,小丽将全班同学的解题情况绘成了条形统计图,见下图2。根据图表,求平均每个学生做对了几道题?
4.利用计算器计算本节课的引例中我国各地区农村家庭平均每人现金收入的平均数、中位数和众数,并回答下列问题:
(1)如果要如实反映我国农村的现金收入状况,你会用哪个数据?
(2)如果要展示我国农村发展形势好,你会用哪个数据?
(3)从这些数据中,你获得了哪些信息?有何感想?
第四环节:课堂小结(5分钟,师生共同总结)
内容:引导学生归纳总结本节课学习的主要内容:
1.根据给定信息,利用计算器求一组数据的平均数。
2.从所给统计图中正确获取信息,并能进行数据的加工与整理。
3.探索精神和合作交流的方式,初步的统计意识和数据处理能力。
三年级数学《平均数》教案 第十二篇
教学内容:
苏教版小学数学第六册教科书第9294页。
平均数是描述一组数据集中趋势的统计特征量。求平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到,如平均成绩、平均身高、平均产量、平均速度等。这样的平均数常用于表示统计对象的一般水平,它既可以反映出一组数量的一般情况,也可以用来进行不同组数量的比较,以看出组与组之间的差别。这部分教材是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题。本节课是三年级下册《统计与平均数》的教学,是把已学的统计知识和认识平均数结合起来,学会求平均数的基本方法:移多补少。引导学生进一步体会到求平均数是解决问题的有效方法之一。以帮助学生灵活运用平均数的知识解决生活中的实际问题,并通过多种练习让学生加深对平均数意义的多角度理解和先求和再平均分的求平均数一般方法的掌握。
教学目标:
1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重难点:
理解平均数的意义,学会求简单数据的平均数。
教学过程:
一、创设情境,自主探究
1.呈现套圈情境。
多媒体演示套圈比赛场景。 谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?
2.收集整理数据。
多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果定格组合成一个画面。 要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。
三年级数学《平均数》教学设计 第十三篇
教学目标:
1、使学生理解“平均数”的含义。
2、使学生掌握求平均数的方法。
3、培养学生的实践能力。
重点难点:
1、理解“求平均数”的含义,掌握求“平均分”的方法。
2、区分“平均分”与“求平均数”这两个概念的不同含义。
教具学具:
主题图,小棒
教学过程:
一、学前准备
1、 口算。
48÷8= (1+3+5)÷3= (5+5+4+6)÷4=
2、 口答。说一说,48÷8和(1+3+5)÷3分别表示的意义。
3、 列式计算。把24名同学平均排成4队,每队有多少人?
4、 导入新课。
说说“平均”是什么意思?什么是“平均分”?结果所得到的数“6”,这个数你能给他名字吗?在现实生活中,求平均成绩、平均身高、平均体重的情况有很多,今天我们就来共同研究“求平均数”的问题。(板书题目)
二、探究新知
1、 讲述平均数的含义。
把一个总数平均分以后得到的结果。
平均数怎样求呢?
2、 出示主题图。
(1)看懂图意。
回收小组成员小红、小兰、小亮和小明分别收集了14个,12个,11个,15个矿泉水瓶,这个组平均每人收集了多少个矿泉水瓶?
(2)学生找出已知条件和问题。
讨论:怎样理解“平均每人收集了多少个矿泉水瓶”?
(3)汇报讨论结果。
进一步明确:“平均每人收集的个数”并不是每个人收集的实际个数,而是在收集总数不变的情况下,假设每个人收集相同个数的值。
(4)引导学生看图。
提问:怎样做才能使四个同学收集的个数同样多?
(5)学生操作。
学生拿出小棒,1根小棒代替1个矿泉水瓶,先按每个人收集的个数摆放,再动脑动手操作,使四个人收集的个数相等。
(6)汇报操作结果。
学生甲:我先数出共有多少根小棒,共52根,再把52平均分成4份,52÷4=13(根),就得出每个人平均收集的个数是13个。
学生乙:运用“移多补少”的数学思想,从小红的14个里取出1个给小兰,从小明的15个里取2个给小亮,就可以直接得到4个人都相等的瓶子个数。
(7)小结操作结果。
通过同学们的操作,我们得到4个人平均收集的瓶子数是13个。但通过操作,我们发现,4个人收集矿泉水瓶的个数发生了变化,这4个人收集的矿泉水瓶的个数才相等。也就是说,平均数得到了,而原来4人收集的个数都发生了变化。在现实生活中,很多求平均数的情况是不允许改变原数的。
例如:求两个人的身高,并不是把高个儿截下一部分来,接在矮个儿身体上,使两人身高相等。也就是说,求平均数并不要求改变原来的实际值。由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的'。
如果我们不通过操作,直接通过计算,能不能求出这4个人平均收集的个数?
(8)引导学生合作探究。
(9)汇报探究结果。
应先相加求出收集到的总数,再用总数除以人数,得到平均数。
(10)指导学生列式计算。
(14+12+11+15)÷4
=52÷4
=13(个)
3、 我们学习了如何求平均数,下面我们自己动手算一下上个学期我们学校进行了1分钟跳绳比赛,我们找了几个同学的跳绳成绩,咱们一起来算算他们平均跳了多少次?
(单位:次)
杨扬
李信芳
陈希
郑钟一
刘安娜
刘严
99
106
102
104
140
103
(99+106+102+104+103)÷6
=654÷6
=109(次)
点名让学生说明什么是“总数量”“份数”“平均数”
三、课堂作业新设计
教材第44页练习十一的第2题。
(1) 读题,理解题目要求。
(2) 把统计表填完整。
(3) 独立计算。
(4) 提问:怎样求出平均最高气温和最低气温?
四、知识扩展
说一说平均数在实际生活中的应用
(1) 家庭中人的平均身高、平均岁数、平均住房面积
(2) 作业本的平均每页字数
(3) 最近一周的平均温度
(4) 考试之后知道各科的得分求平均分
(5) 捐款
五、课堂小结
谈谈你自己的收获。
三年级平均数教案 第十四篇
教学目标:
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、复习
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
二、创设问题情景,引导探究。
1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的。平均数来比较。
2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。
三、拓展与应用
说说生活中还有哪些事要通过求平均数来解决一些问题。
四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
五、作业练习十一4、5
读书破万卷,下笔如有神。以上这14篇三年级数学《平均数》教学设计是来自于快回答的平均数的相关范文,希望能有给予您一定的启发。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。