1. 主页 > 知识大全 >

《近似数》教案优秀4篇(近似数 教案)

作为一名教职工,通常需要用到教案来辅助教学,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写才好呢?快回答分享了4篇《近似数》教案,希望对于您更好的写作近似数有一定的参考作用。

近似数 篇一

教学目标:

使学生掌握亿级的数的大小比较方法。

会用“四舍五入法”求亿以上的数的近似数。

建立自然数的概念。

培养学生比较、分析的思维方法。

教学重点、难点:

比较亿以上的数的大小是重点,省略亿后面的尾数,求近似数是学习的难点。

教学过程:

一、教学自然数概念。

我们数物体的个数用的1、2、3、4,……10,11……叫做自然数。

问:这些自然数是怎样排列的?

每相邻的两个自然数的差是几?

最小的自然数是几?

有没有最大的自然数?

引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数一个比它大1的数,所以自然数的个数是无限多的。

问:一个物体也没有怎样表示?

0是不是自然数?

引导学生得出:一个物体也不没有,用0表示。0不是自然数。

自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示。

自然数

板书:整数 0

……

二、教学整数大小的比较。

1.复习准备。

在下面○里填上“>”、“<”或“=”。

99999999○100000000 65432○75432 8909034○8908034

问:每一组两个数是怎样比较的?

引导学生说出:两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”。

第二组两个数都是五位数,你是怎样比较的?

引导学生说出:两个五位数比较,万位上大的那个数就大;所以填“<”。

第三组的两个数你是怎样比较的?

引导学生说出:这两个数的位数相同,就从最高位比起,如果最高位上数相同,依次比较下一位……相同数位上数大的那个数就大,所以填“>”。

2.新课引入。

我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小。(板书课题:整数大小的比较)

3.出示例4:

比较下面每组中两个数的大小。

999999999○1000000000

问:这两个数各是几位数?它们的最高位各是什么位?应填什么符号?

如果两个数的位数不同,怎样比较大小呢?

最后得出:两个数的位数不同,位数多的那个数大。

出示第二组数,把复习题中的第二组数末尾各添4个0

654320000○754320000

学生观察后独立解答,思考这两个数的特点,怎样比较它们的大小。

从而得出:这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”。

出示第三组数,把复习题中的第三组两个数末尾各添3个0。

89090340000○89080340000

这两个数都是十位数,并且左起第一位都是8,你怎样比较?

学生独立比较后说出:左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大所以应填“>”。

启发学生逐步总结出完整的比较数的大小的方法。

问:比较两个数的大小有几种情况?位数不同的怎么比?

位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?

(学生讨论,总结出整数大小比较的一般方法,[把复习时的板书补充完整]明确以前总结的方法同样适用于比较亿以上的数)

练一练

完成练习十的第1题。

三、教学求近似数

1.复习。

我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数。

729380 5384000

问:省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法。

2.新课引入。

省略亿后面的尾数,我们也可以用同样的方法来求它们的近似数,这就是我们今天要学习的另一个内容。(板书课时:求近似数)

3.出示例5。

省略下面各数亿位后面的尾数,求它们的近似数。

(1)1034500000 (2)20897000000

同学们自己试做。

共同订正,让学生说一说是怎么想的。

根据学生回答,教师强调,省略亿后面的尾数,只要看省略尾数的右边起第一位上的数是不是满5。不要管尾数后的几位是多少。

如(1)题:1034500000≈10亿

千万位上的数不满5,把亿位后面的尾数舍去。

如(2)题:20897000000≈209亿

千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1。

启发学生自己总结出求一个整数的近似数的方法。

阅读课本43页的求近似数的方法,并明确这种求近似数的方法叫做四舍五入法。(板书)

练一练

第43页“做一做”的第1、2题。

四、课堂练习。

1.指导学生做练习十第2题:写出最大的九位数和最小的十位数。

应该怎样想?相邻二人讨论。

教师启发学生根据数的大小比较来想。要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数。同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000。

2.判断正误。

4528800000=45亿( )

1214000000≈12亿( )

608754000000≈6088( )

通过分析错误之处,启发学生说出求一个数的近似数应注意什么。

求近似数应用“≈”符号。

省略尾数后不要忘记写单位名称。

求出一个数的近似数后,要写上计数单位。

3.总结性提问。

怎样比较两个整数的大小?

怎样省略亿后面的尾数,求它的近似数?

五、作业。

练习十第3、4题。

附板书设计:

整数大小的比较 求一个整数的近似数 四舍五入法

自然数 省略万后面尾数求近似数

整数0 729380≈73万 5384000≈538万

…… 例5 省略亿后面尾数,求近似数

99999999100000000 位数不同,位数多的数大 (1)1034500000≈10亿

6543275432位数相同,从最高位比,不满5,尾数舍去

89090348908034…… (2)20897000000≈209亿

满5,亿位加1

例4 判断正误

9999999991000000000 (1)4528800000=45亿(×)

654320000754320000 (2)1214000000≈12亿 ( √ )

89090340008908034000 (3)6087540000000≈60875(×)

近似数教学教案 篇二

教学目的:

1、结合现实素材让学生认识近似数,并能结合实际进行估计。

2、通过教学活动培养学生的数感。

3、知识与生活实际结合,让学生体会到近似数在生活中的作用和意义。

教学重、难点:

初步理解近似数的意义。

教学过程:

一、游戏引入

猜数:教师或学生悄悄指定一个4位数,学生猜猜是什么数。猜的过程中提示学生所猜数是否与目标数接近,猜中 www.kuaihuida.com 快回答…为止。

二、探究新知

1、教学例8

(1)出示主题图和近似数“约是1500人”。

请猜猜育英小学的准确数是多少。

猜中之后提问:你如何想到这个数的`?

(2)比较1500和1506两数

指出:1506是一个准确数,1500是它的近似数,在不需要准确数据的情况下,选择一个近似数可方便记忆。

(3)一个数的近似数不唯一

出示主题图2“新长镇有9992人”

9992的近似数有什么?

同学们说的数哪个最接近9992?

在不要求准确的情况下,你会选择哪个数来表示新长镇的人数?为什么?

小结:一般情况下选择最接近的整十、整百、整千数,方便记忆。

2、生活中的数学

近似数的使用

举例:二年级同学304人,可说大约300人。

购物总价钱2998元,可说大约3000元。

学生举例

3、练习

P794、5、6

三、课堂作业P808、9

四、课后任务P807

《近似数》教案 篇三

教材分析

“准确数和近似数”是义务教育课程标准实验教科书,浙教版七年册第二章的内容。教材通过一则科技报道引入准确数和近似数的概念,在学生已有的运算能力的基础上,给出近似数的精确度的两种表示方式,及近似值的取法。准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。

学生分析

学生往往存在着一些生活经验,这些生活经验是学生学习的基础,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的基础上,明确近似数的角度有两种表示方式以及学会近似值的取法。教学中要及时了解学生的认知程度,以便调整教学。

教学目标

通过实例经历近似数和准确数概念的产生过程。

了解近似数的精确度的两种表示方式。

能说出由四舍五入得到的有理数的精确位数和有效数字。

会根据预定精确度取近似值。

教学重点

近似数的两种表示方式及近似值的取法

教学难点

近似数所表示范围及有效数字如何表示近似数的精确度

教辅工具

投影仪、卷尺、“神舟五号飞船”图片、投影片6张

教学设计思路

本节课首先从学生熟悉的生活情境出发引入数学概念。通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习巩固,让学生很自然地接受这一部分知识。

教学流程

一、实践操作,引入课题

问:我想知道我们教室里有多少张课桌?黑板长为多少?

20xx年我国人口总数为多少?你们能帮老师解答吗?

(学生分小组进行合作操作、讨论)

[设计说明:通过学生亲自操作,引起学生的兴趣]

问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的?

(学生回答)

板书:像这样与实际完全符合的数称为准确数

像这样与实际接近的数称为近似数

通过测量或估计得到的都是近似数

板书课题:准确数和近似数

[设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]

二、导入新知

师:21世纪进入太空是很多人的梦想,同学们有想过吗?

(学生开心的各抒己见)

展示:“神舟五号飞船”图片

投影片A:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。

[设计说明:跟时尚接轨活跃课堂气氛,加深对概念的理解]

问:上面叙术中的各数,哪些是准确数?哪些是近似数?并说明你的理由。

(只要学生根据准确数和近似数的概念和自身的经验说出理由,均可以认为正确)

投影片B:(快速口答)下列叙述中的各数,哪些是准确数?哪些是近似数?

(1)月球与地球之间的。平均距离大约是38万公里

(2)某本书的定价是4.50元

(3)小明身高为1.57米

(4)美国一家猫粮制作公司称:“在美国共有8500万只猫,22%的猫主人都选择猫爱看的频道”。

[设计说明:通过练习,加以巩固]

师:生活中用到近似数的情况很多,有时是因为客观条件无法或难以得到精确数据,如:“20xx年我国人口总数约为12.9533亿”,有时是实际问题无需得到精确数据,如“校长在会上说,这次学校包场看电影,买票大约需2500元”

三、展开过程,师生互动

对近似数,我们常需知道它的精确度,一个近似数的精确度通常有两种表示方式:

板书:1、一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位

如:身高1.57米是千分位数字四舍五入到百分位的结果,它精确到百分位(或精确到0.01)

近似数38万是千位数字四舍五入到万位的结果,它精确到万位

问:身高1.57米表示小明实际身高在什么范围内呢?

(学生思考、讨论,教师给予指导)

近似数38万表示的范围为 ?

(学生举手回答,教师鼓励,每位同学都发表自己的见解,最后指出正确答案)

投影片C:例1、下列由四舍五入法得到的近似数各精确到哪一位?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

(学生起立回答,教师和其余学生一起进行评判)

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的精确位数]

注:①以百、千、万、十万、百万等做单位的近似数的精确位数

②小数点后面的零

板书:2、用有效数字的个数来表述一个近似数的精确度,由四舍五入得到的近似数从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字。

如:1.57有 3个有效数字:1、5、7

38万 有2个有效数字:3、8

0.03070 有4个有效数字:3、0、7、0

注:近似数中越在左边的数字就越重要,有效数字越多,精确度越大

投影片D:例2、(口答)例1中各数有几个有效数字?分别是什么?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的有效数字及个数]

四、知识应用

投影片E:例3、用四舍五入法,按括号内的要求对下列各数取近似值

(1)0.33448(精确到千分位)

(2)64.8(精确到个位)

(3)1.5952(精确到0.01)

(4)0.05069(保留2个有效数字)

(5)84960(保留3个有效数字)

(学生练习上独立完成,教师巡视进行辅导对于(5)教师不急于指出,先让学生思考,发现问题提出来,如没有学生提出,教师可直接指出)

[设计说明:让学生学会如何根据预定精确度取近似值]

注:按预定要求取近似值时,不要遗漏小数点后面的零,对较大数取近似值最好用科学记数法表示

投影片F:例4、(1)计算:-22×11÷7(结果保留4个有效数字)

(2)一根木棒长4.4米,均匀截成6段,每段长多少米?(精确到0.01米)

[设计说明:这里安排练习,使学生体会到数学知识来源于实际,又应用于实际问题中]

五、小结:引导学生进行总结

六、作业:

教材P57课内练习、P58作业题A组、B组、C组

近似数 篇四

教学内容:第20—21页例9

教学目的:

1.使学生初步学会“四舍五入“法求一个数的近似数。

2.会写、会用“≈“。

教学重点:用“四舍五入“法求一个数的近似数。

教学难点:归纳求万以内近似数得方法。

教学过程:

一、调查汇报有关数据。

1.学生汇报调查情况。

2.根据学生的调查情况引入新课:

(1)教师根据学生的调查情况进行板书。

(2)通过实例向学生说明什么是近似数。

二、自主探索,领悟新知

1.教师在学生汇报的基础上,出示一组与学生或生活相关的数据、让学生直接说出它们大约是几百。

(1)教师出示数据。

(2)学生汇报说明自己的想法,教师板书:

208 200 987 1000

927 900 892 900

517 500 671 700

439400 152 400

2.在出示几个百位上的数字相同,十位数上的数字是4、5、6的三位数,让学生讨论他们大约是几百?并说明理由。

(1)学生讨论汇报。

(2)教师根据学生汇报点拨引导。

在肯定学生的判断方法后提出问题,这种方法的确能够判断一个数比较接近哪个整百数,即它的近似数,但是这种求法太麻烦,因为看到这个数,就要进行口算,有的数并不是一眼就能看出来,启发学生根据板书看一看有没有更方便的方法求一个数的近似数?

(3)学生再`次讨论,教师巡视。

(4)汇报交流,总结方法。

(5)教师小结,提炼方法。

3.学习准确数和近似数的表示方法。

教师利用板书进行引导,教学约等号的写法和读法,完善板书。

4.反馈练习,巩固方法。

做第20页的“做一做”

三、总结交流,提炼方法

(1)学生先在小组中讨论分析求万以内数的近似数的方法,然后汇报。

(2)教师总结。

(3)学生看书。

四、巩固练习,强化知识

做练习五的第1题。

五、课堂作业

(1)当5 60≈6000时, 内取得数字可以是( )。

(2)当4 89≈4000时, 内取得数字可以是( )。

(3)求下面各数的近似数(省略最高位后面的尾数)

485≈ 16498≈ 2510≈ 40938≈ 76560≈

板书:

208≈200 987≈1000

927≈900 892≈900

517≈500 671≈700

439≈400 152≈400

聪明在于勤奋,天才在于积累。以上就是快回答给大家分享的4篇《近似数》教案,希望能够让您对于近似数的写作更加的得心应手。