排列组合作为高中代数课本的一个独立分支,极具抽象性而成为“教”与“学”难点,有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平、思维能力在一定程度上受到限制,还不太适应这种极具抽象的运算方法。笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。为了让您对于排列组合的写作了解的更为全面,下面快回答给大家分享了5篇《排列与组合》教案,希望可以给予您一定的参考与启发。
《排列与组合》教案 篇一
教学目标
1.知识能力目标:
①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数
②初步培养有序地全面地思考问题的能力。
③培养初步的观察、分析、及推理能力。
2.情感态度目标:
① 感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣
② 初步培养有顺序地、全面地思考问题的意识。
③ 使学生在数学活动中养成与人合作的良好习惯。
教学重难点
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。
教学过程
一、创设情境,引发探究
1、师:同学们喜欢去公园吗?为什么?
2、师:今天王老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。(课件出示:去数学广角得买门票,儿童票5角钱一张,请大家将准备好的5角钱拿出来。如果你能用这些钱币说出5角钱的一种付法,就可免费到数学广角去玩。多媒体出示1角、2角、5角三种面值的人民币)。
3、学生小组合作后,展示学生不同的拿法:
生1:我拿的是1张5角的纸币。
生2:我是这样拿的,2张2角1张1角。
生3:也可以这样拿,1张2角3张1角。
生4:还可以这样拿,5张1角。
师:真了不起!想出了这么多种方法,有重复或遗漏的吗?真棒!现在咱们就进数学广角。
[设计意图]:激趣导入,让学生在游戏中产生兴趣,在活动中找到启示。
二、动手操作、探究新知
1、初步感知排列
(课件出示:小朋友们,欢迎你们来到数字宫,我们先做个摆数游戏!用数字卡片1、2可以摆成几个不同的两位数呢?)
师:请孩子们先独自摆摆,可以边摆边记,看谁摆最完整?
生1:我可以用数字卡片1、2摆成12和21这两个两位数。
生2:我也是。
(课件出示:用数字卡片1、2、3可以摆成几个不同的两位数呢?)
师:同学们,用数字卡片1、2摆成12和21这两个两位数。那用数字卡片1、2、3可以摆成几个不同的两位数呢?同桌合作,一人摆数字卡片,一人把摆好的数记录下来,先商量一下谁摆数字卡片,谁记数,比比哪桌合作得又好又快。
(学生操作)
师:谁愿意起来告诉我们你们摆了那几个两位数?
生1:我们摆了13、32、21
生2:我们摆了13、12、23、31、32
生3:我们摆了13、31、23、32、12、21
2、合作探究排列
师:为什么有的摆的数多,而有的却摆的少呢?有什么好办法能保证既不漏数、也不重复呢?请每个小组进行讨论,看看有什么好办法?再按你们的。方法,边摆,找一个人把他记下来!
(学生带着问题进行第二次操作)
师:哪个小组愿意来汇报?
生1:我摆出12,再交换两个数的位置就是21,再摆23,交换后是32,最后摆13,交换后就是31,这样就不会漏也不会重复了。(生汇报,师板书)
生2:我先把数字1放在十位,再把数字2和3分别放在个位,分别组成12和13,我接着把数字2放在十位,数字1和3分别放在个位,又分别组成了21和23,最后把数字3放在十位,数字1和2分别放在个位,分别组成了31和32,这样也不会漏也不会重复了!(生汇报,师板书)
生3:我先把数字1放在个位,再把数字2和3分别放在十个位,分别组成21和31,我接着把数字2放在个位,数字1和3分别放在十位,又分别组成了12和32,最后把数字3放在个位,数字1和2分别放在十位,分别组成了13和23,这样也不会漏也不会重复了!
(生汇报,师板书)
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。
[设计意图]:让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。
3.感知组合
师:同学们,你们用自己的聪明才智赢来了免费游玩数学广角的门票,老师祝贺你们
(教师不自主的一边走一边伸手和同学握手)。提到握手,老师又有一个问题想请大家帮忙,愿意吗?问题是:如果三个人握手,每两个人握一次,三人一共要握多少次呢?
(小组汇报结果并表演)生1:6次。生2:3次。生3:4次
师:到底几次,小组为单位,看看每两个人握一次手,三个人一共要握手多少次?(学生活动)
(请2组小朋友汇报) (请这2组上台表演握手) 师:两个人握一次手,三人一共要握3次手。老师现在有一个疑问,排数字卡片时用3个数可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢? 结论:摆数与顺序有关,握手与顺序无关。 摆数可以交换位置,而握手交换位置没用。
三、应用拓展,深化探究
1、搭配衣服(应用练习)
师:现在我们去那里玩呢?我们一起来看看!(出示课件:欢迎到游艺宫观看时装表演,这四件衣服有几种不同的穿法呢?)书上连一连,画一画。(学生操作)
师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?
生1:一件上衣可以配两条不同的裤子,这样有2种,另一件上衣又可以配两条不同的裤子,又有两种,这样一共有4种。
生2:我是1号和3号,1号和4号,2号和3号,2号和4号。
师:书上没序号你也学会给它们编号了,真了不起!刚才这位小朋友从衣服入手,有4种不同的搭配方法,你还有其他方法吗?
生:可以从裤子连,每条裤子连两件上衣。也有4种搭配方法。
师:如果你是模特,你最喜欢穿那套衣服,为什么?
生1:我喜欢1号和3号搭配,红色的好看。
生2:我喜欢1号和4号搭配,这样的衣服穿起来很漂亮。 ,,,,
2、从数学广角出发经过学校回到家中有几条路可走?
3、(拓展练习)终极大挑战—— 电话号码:3 3 0 8 4 ( )( )( )
最后三个数字是由1、3、9组成
的,猜一猜,明明家的电话号码
可能是多少呢?
[设计意图]:用实践活动培养学生的实践意识和应用意识,同时使学生受到学习的乐趣。并通过不同形式的练习不但联系学生的生活实际,而且巩固了所学的知识。
四、总结延伸,畅谈感受
师:同学们,由于时间关系,我们该回家了!刚才,我们去哪里玩了!数学广角(板书课题),数学广角好玩吗,有趣吗,你都看到了什么?有什么收获吗?
生1:我学得真高兴啊,我学到了怎样排列数字。
生2:我也很高兴,我学到了排列时有好的方法能让我们既不漏掉也不重复。
师:原来生活中有这么多数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题,掌握了这些知识,我们就可以把生活装点的更加美丽!
《排列与组合》教案 篇二
教学目标
1.知识目标
(1)能够熟练判断所研究问题是否是排列或组合问题;
(2)进一步熟悉排列数、组合数公式的计算技能;
(3)熟练应用排列组合问题常见解题方法;
(4)进一步增强分析、解决排列、组合应用题的能力。
2.能力目标
认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。
3.德育目标
(1)用联系的观点看问题;
(2)认识事物在一定条件下的相互转化;
(3)解决问题能抓住问题的本质。
教学重点:排列数与组合数公式的应用
教学难点:解题思路的分析
教学策略:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。
媒体选用:学生在计算机网络教室通过专题站,利用网络资源(如在线测度等)进行自主探索和研究。
教学过程
一、知识要点精析
(一)基本原理
1.分类计数原理:做一件事,完成它可以有 类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,,在第 类办法中有 种不同的办法,那么完成这件事共有: 种不同的方法。
2.分步计数原理:做一件事,完成它需要分成 个步骤,做第一步有 种不同的方法,做第二步有 种不同的方法,,做第 步有 种不同的办法,那么完成这件事共有:
种不同的方法。
3.两个原理的区别在于一个与分类有关,一个与分步有关即联斥性:
(1)对于加法原理有以下三点:
①斥互斥独立事件;
②模式:做事分类加法
③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。
(2)对于乘法原理有以下三点:
①联相依事件;
②模式:做事分步乘法
③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。
(二)排列
1.排列定义:一般地说从 个不同元素中,任取 个元素,按照一定的顺序排成一列,叫做从 个不同元素中,任取 个元素的一个排列。特别地当 时,叫做 个不同元素的一个全排列。
2.排列数定义:从 个不同元素中取出 个元素的所有排列的个数,叫做从 个不同元素中取出 个元素的排列数,用符号 表示。
3. 排列数公式:(1) ,特别地
(2)且规定
(三)组合
1.组合定义:一般地说从 个不同元素中,任取 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合。
2.组合数定义:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数,用符号 表示。
3. 组合数公式:(1)
4.组合数的两个性质:(1) 规定 (2)
(四)排列与组合的应用
1.排列的应用问题
(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用直接法或间接法求解。
2.组合的应用问题
(1)无限制条件的简单组合应用问题,可直接用公式求解。
(2)有限制条件的组合问题,可根据具体的限制条件,用直接法或间接法求解。
3.排列、组合的综合问题
排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
在解决排列与组合的应用题时应注意以下几点:
(1)限制条件的排列问题常见命题形式:
在与不在
相邻与不相邻
在解决问题时要掌握基本的解题思想和方法:
①相邻问题在解题时常用捆绑法,可以把两个或两个以上的元素当做一个元素来看,这是处理相邻最常用的方法。
②不相邻问题在解题时最常用的是插空法。
③在与不在问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置。
④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。
(2)限制条件的组合问题常见命题形式:
含与不含
至少与至多
在解题时常用的方法有直接法或间接法。
(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。
4、解题步骤:
(1)认真审题:看这个问题是否与顺序有关,先归结为排列问题或组合问题或二者的综合题,还应考虑以下几点:
①在这个问题中 个不同的元素指的是什么?② 个元素指的又是什么?
②从 个不同的元素中每次取出 个元素的排列(或组合)对应的是什么事件;
(2)列式并计算;
(3)作答。
二、学习过程
题型一:排列应用题
9名同学站成一排:(分别用A,B,C等作代号)
(1) 如果A必站在中间,有多少种排法?(答案: )
(2) 如果A不能站在中间,有多少种排法?(答案: )
(3) 如果A必须站在排头,B必须站在排尾,有多少种排法?(答案: )
(4) 如果A不能在排头,B不能在排尾,有多少种排法?(答案: )
(5) 如果A,B必须排在两端,有多少种排法?(答案: )
(6) 如果A,B不能排在两端,有多少种排法?(答案: )
(7) 如果A,B必须在一起,有多少种排法?(答案: )
(8) 如果A,B必须不在一起,有多少种排法?(答案: )
(9) 如果A,B,C顺序固定,有多少种排法?(答案: )
题型二:组合应用题
若从这9名同学中选出3名出席一会议
(10) 若A,B两名必在其内,有多少种选法?(答案: )
(11) 若A,B两名都不在内,有多少种选法?(答案: )
(12) 若A,B两名有且只有一名在内,有多少种选法?(答案: )
(13) 若A,B两名中至少有一名在内,有多少种选法?(答案: 或 )
(14) 若A,B两名中至多有一名在内,有多少种选法?(答案: 或 )
题型三:排列与组合综合应用题
若9名同学中男生5名,女生4名
(15) 若选3名男生,2名女生排成一排,有多少种排法?(答案: )
(16) 若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?
(答案: )
(17) 若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?
(答案: )
(18) 若男女生相间,有多少种排法?(答案: )
题型四:分组问题
6本不同的书,按照以下要求处理,各有几种分法?
(19) 一堆一本,一堆两本,一堆三本 (答案: )
(20) 甲得一本,乙得两本,丙得三本 (答案: )
(21) 一人得一本,一人得两本,一人得三本 (答案: )
(22) 平均分给甲、乙、丙三人 (答案: )
(23) 平均分成三堆 (答案: )
(24) 分成四堆,一堆三本,其余各一本 (答案: )
(25)分给三人每人至少一本。 (答案: + + )
题型五:全能与专项
车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?
题型六:染色问题
(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有( )种不同的涂色方法?
(答案:260)
(27)某城市在中心广场建造一个花圃,花圃分为6个部分
(如图)。现在栽种4种不同颜色的花,每部分栽种一种且相
邻部分不能栽种同样颜色的花,不同的栽种方法有 种。
分析:先排1、2、3排法 种排法;再排4,若4与2同色,
5有 种排法,6有1种排法;若4与2不同色,4只有1种排法;
若5与2同色,6有 种排法;若5与3同色,6有1种排法
所以共有 ( + +1)=120种
题型七:编号问题
(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种? (答案:144)
(29)将数字1,2,3,4填在标号为1,2,3,4的四个方格里,每格填上一个数字且每个方格的标号与所填的数字均不相同的填法有多少种?(答案:9)
题型八:几何问题
(30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取3个点,使它们和点A在同一个平面上,有多少种不同的取法?
(Ⅱ)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法?
解:(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有
5个点,从中取出3点必与点A共面共有 种取法,含顶点A的
三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法。
根据分类计数原理,与顶点A共面三点的取法有 +3=33(种)
(2)(间接法)如图,从10个顶点中取4个点的取法有 种,除去4点共面
的取法种数可以得到结果。从四面体同一个面上的6个点取出4点必定共面。有 =60种,四面体的每一条棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分)故4点不共面的取法为 -(60+6+3)=141
题型九:关于数的整除个数的性质:
①被2整除的:个位数为偶数;
②被3整除的:各个位数上的数字之和被3整除;
③被6整除的:3的倍数且为偶数;
④被4整除的:末两位数能被4整除;
⑤被8整除的:末三位数能被8整除;
⑥25的倍数:末两位数为25的倍数;
⑦5的倍数:个位数是0,5;
⑧9的倍数:各个位数上的数字之和为9的倍数。
(31):用0,1,2,3,4,5组成无重复数字的五位数,其中5的倍数有多少个?
(答案:216)
题型十:隔板法:(适用于同元问题)
(32):把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法?
分析:把12本笔记本排成一行,在它们之间有11个空当(不含两端)插上6块板将本子分成7份,对应着7名同学,不同的插法就是不同的分法,故有 种。
三、在线测试题
1.以一个正方形的顶点为顶点的。四面体共有( D )个
(A)70(B)64(C)60(D)58
2.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( D )
(A)90种 (B)180种 (C)270种 (D)540种
3.将组成篮球队的12个名额分配给7所学校,每校至少1个名额,则不同的名额分配方法共有( A )
(A) (B) (C) (D)
4.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( B )
(A)480 (B)240 (C)120 (D)96
5.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为( C )
(A)90 (B)105 (C)109 (D)100
6.如右图,一个地区分为5个行政区域,现给地图着色,
要求相邻区域不得使用同一颜色,现在4种颜色可供选择,
则不同的着色方法共有( B )种(用数字作答)
(A)48 (B)72 (C)120 (D)36
7.若把英语error中字母的拼写顺序写错了,则可能出现的错误的种数是( A )。
(A)19 (B)20 (C)119 (D)60
8.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有( D )
(A)6 种 (B)5种 (C)4种 (D)3种
四、课后练习
1.10个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于盒子的编数,问有 种不同的放法?
2.坐在一排9个椅子上,相邻两人之间至少有2个空椅子,则不同的坐法的种数是
3.如图A,B,C,D为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有 种。
4.面直角坐标系中,X轴正半轴上有5个点,Y轴正半轴有3个点,将X轴上这5个点或Y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个。
5.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.5元的邮件一件,为使粘贴的邮票张数最小,且邮资恰为7.5元,则至少要购买 张邮票。
6.(1)从1,2,,30这前30个自然数中,每次取出不同的三个数,使这三个
数的和是3的倍数的取法有多少种?
(2)用0,1,2,3,4,5这六个数字,可以组成多少个能被3整除的四位数。
(3)在1,2,3,,100这100个自然数中,每次取出三个数,使它们构成一个等差数列,问这样的等差数列共有多少个?
(4)1!+2!+3!++100!的个位数字是
7.5个身高均不等的学生站成一排合影,若高个子站中间,从中间到两边一个比一个矮,则这样的排法种数共有( )
(A)6种 (B)8种 (C)10种 (D)12种
8.某产品中有4只次品,6只正品(每只产品均可区别),每次取一只测试,直到4只次品全部测出为止,则第五次测试发现最后一只次品的可能情况共有多少种?
《排列和组合的综合应用》多媒体教学的教师小结
数学教师在传统教学环境下也许会遭遇诸如以下的困难:
《排列和组合的综合应用》这堂网络课,教学重点是几种常见命题的形式的解题思路及有关应用。首先,通过排列和组合有关知识的学习,对排列和组合有一个整体上的认识,给学生打下了很好的基础。其次,在教学中,本着以学生为本的原则,让学生自己动手参与实践,使之获取知识。在传统教学过程中,学生主要依靠老师,自主探索的能力不强,因此在本节课学习中,教师在课堂上适时抛出问题,使学生有的放矢,有针对性,知道自己下一步应该做什么,同时组织学生以小组进行讨论学习,防止出现学生纯粹浏览网页这种现象。在强大的网络环境下,让学生探讨排列和组合的区别与联系,自主发现结论,以人机交互的方式,使个性化学习成为可能,体现了学科教学与教育技术的整合。第三、针对数学学科的特点,在学生自主探索发现结论后,还需在理论上给予支持。因此,对各种常见的类型,教师在课堂上分别给予小结,目的是让学生在今后的自主学习中,若遇到同样的问题,有能力自己解决。从而让学生逐步熟悉、形成较为完整的一套自主学习的方法。
在上课的过程中,充分体现出计算机的交互和便捷的特点,学生可以根据需要,在老师的引导下,选择自己学习的进度和内容,去自主的学习和探索。通过实际操作,帮助理解和掌握本节课重点内容。在上课过程中,学生积极思考,相互协作讨论,踊跃回答问题,气氛活跃,教学效果好。在学生课后的反馈中,总体的反映都觉得各自获益匪浅,从中学到了不少的东西,切实掌握了排列和组合的有关知识。
当然,本节课还有许多需要改进的地方,如课堂上安排节奏比较快,例题,练习留给学生探索,动手的时间还可以再多一些;另外由于学生电脑的水平以及数学学科的特点,所以许多学生不能很熟练地操作电脑,许多数学符号,公式无法在讨论区中体现。
总之,网络探究的最大好处是学生能够在网络中找到课堂教学中体验过和未体验过的感性知识,提高学生求知欲,增强学习的自主性,使学生的个性在学习中得以充分张扬。而探究过程中的相互交流不仅可扩大知识的摄入量,更可培养学生形成一种在交流中学习成长的意识。因此在网络教学这领域中,今后还有很大的学习空间,做为一名教师,要适应时代的需要,改善自己平时的传统教学思维,大胆创新,努力学习,不断地探索,不断反思。树立现代教育观念,不断学习现代化技术,完善自己,提高素质,才能担负起祖国赋于我们肩上的重任。
《排列与组合》教案 篇三
一、复习目标
1.复习分类计数原理与分步计数原理,并能用它们分析和解决简单的应用问题;
2.理解排列与组合的意义,掌握排列数和组合数的计算公式,掌握组合数的两个性质,并能应用它们解决一些简单的问题。
二、基础训练
1.5人分4张同样的足球票,每人至多分1张,而且票必须分完,那么不同的分法的种数(D)
2.5名同学去听同时进行的4个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同选法的种数是 (B)
3.正十二边形的对角线的条数是 (B)
4.以正方体的顶点为顶点的三棱锥的个数是 (D)
5.若 ,那么 6 .
6.学生可从本年级开设的7门任意选修课中选择3门,从6种课外活动小组中选择2种,不同选法种数是 .
7.安排6名歌手的演出顺序时,要求某名歌手不第一个出场,也不是最后出场,不同的演出顺序有 种。
三。例题分析
例1. 4个男同学,3个女同学站成一排,
⑴3个女同学必须排在一起,有多少种不同的排法?
⑵任何两个女同学彼此不相邻,有多少种不同的排法?
⑶其中甲、乙两同学之间必须有3人,有多少种不同的排法?
⑷甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?
⑸女同学从左到右按高矮顺序排,有多少种不同的排法?(3个女生身高互不相等)
答案:⑴ ; ⑵ ; ⑶ ;
⑷ ; ⑸ 。
例2.用数字0,1,2,3,4,5组成重复数字的四位数,
⑴可组成多少个不同的四位数?
⑵可组成多少个四位偶数?
⑶可组成多少个能被3整除的四位数?
⑷将⑴中的四位数从小到大的顺序排列一数列,问第85项是什么?
答案:⑴ ; ⑵ ;
⑶ ; ⑷2301。
例3.书架上有若干本互相不相同的书,其中数学书3本,外语书2本,若将这些书排成一排,数学书排在一起,且外语书排在一起的`概率为 ,试问书架上共有多少本书?。
答案: ,可得 。
例4.有6本不同的书,
⑴如果全部分给甲、乙、丙,每人得两本,有多少种不同的分法?
⑵如果全部分给甲、乙、丙,一人1本,一人2本,一人3本,有多少种不同的分法?
⑶如果将这6本书分成三堆,每堆2本,有多少种不同的分法?
答案:⑴ ; ⑵ ; ⑶
例5.由数字0,1,2,3,4,5组成的无重复数字的四位数中,能被2整除但不能被3整除的有多少个?
提示:
四、后作业:
1.若 ,则 等于 (A)
14 12 13 15
2.用0,1,2,3,4,5组成没有重复数字的六位数,2,4不相邻的有 (B)
360个 408个 504个 576个
3.从9名男同学,6名女同学中选出5人排队成一列,其中至少有2名男生,则不同排法有(D)
4.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰好有一个空盒的放法有
144 种(用数字作答)。
5.要排出某班一天中语文、数学、政治、英语、体育、艺术6堂课的课程表,要求数学课排上午(前4节),体育课排在下午(后2节),不同的排法种数是 .
6.已知集合 , ,可以建立从集合 到集合 的不同的映射个数是 ,从集合 到集合 且以集合 为像集的不同的映射个数是 36 .
提示:
7.一种汽车牌照号码由2个英文字母后接4个数字组成,且2个英文字母不能相同,不同的牌照号码个数是 .
8.从1,3,5,7,9取出3个不同的数字,再从0,2,4,6,8里取出2个不同的数字,组成比70123大的五位数,共有多少个?
提示:
9.6位新教师全部分给4所学校,每校至少1人,共有多少种不同的分配方案?
提示:
10.7个人一起照相留念,分别按下列要求求出各题的排列数:
⑴分成两排,前排3人,后排4人; ⑵站成一排,甲既不站排头,又不站排尾;
⑶站成一排,甲、乙两人必须在一起; ⑷站成一排,甲、乙、丙三人均不相邻。
答案:⑴ ; ⑵ ;
⑶ ; ⑷ 。
11.在3000与8000之间,
⑴有多少个没有重复数字且能被5整除的奇数?
⑵有多少个没有重复数字的奇数?
答案:⑴ ; ⑵
12.从 ,0,1,2,3中选出三个数字(不重复)组成二次函数 的系数,
⑴开口向上且不过原点的不同的抛物线有几条?
⑵与 轴正、负半轴均有交点的不同抛物线有几条?
⑶与 轴负半轴至少有一个交点的不同抛物线有几条?
答案:⑴27; ⑵18; ⑶26
《排列与组合》教案 篇四
说课设计一教材分析二学情分析三教学目标四设计理念五
教学过程
一教材分析:
排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透数学思想方法方面做了一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,《排列与组合》教案设计。
教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,例1给出了一幅学生用三张数字卡片摆两位数的情境图,学生可以进行小组合作学习,然后小组交流摆卡片的体会:怎样摆才能保证不重复不遗漏。教材以学生熟悉而又感兴趣的生活场景为依托,重在向学生渗透这些数学思想方法,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。
二学情分析:
在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,等等,作为二年级的学生,已有了一定的生活经验,因此我在这次教学中安排了学生喜闻乐见的喜羊羊和学生们一起学习排列与组合知识,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力。
三教学目标:
1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;
2.使学生初步学会排列组合的简单方法。
3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。4.激发学生兴趣,培养学生发散思维。
四设计理念:根据学生认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学,做到:
a、创设情境活用教材我对教材进行了灵活的`处理,创设了喜羊羊,美羊羊,懒羊羊去慢羊羊家做客这样一个情境,在一个又一个的活动情境中渗透排列和组合的思想方法,让学生亲身经历探索简单事物排列和组合规律的过程,在活动中主动参与,在活动中发现规律。
b、关注合作促进交流以小组合作的形式贯穿全课,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。
c.激发兴趣,培养发散思维。二年级孩子都非常喜欢喜羊羊,根据学生的兴趣爱好,我把喜羊羊请进了课堂,我想一定能激发学生的兴趣,用1.2,3,摆出所有的两位数,摆数的方法超过三种以上,培养了学生的发散思维,还有用五元钱买地图,也有不同的付钱方法,其实这节课设计的活动内容,都能多多少少的体现一些发散思维。五教学过程一、以故事形式引入新课
二、用开密码锁的方法进行数的排列
活动三。用握手的方法进行组合活动四。排列组合的对比。五练习二年级上册数学广角——排列与组合教学设计
一、以故事形式引入新课同学们,今天老师给大家请来了3只可爱的小动物,你们看它们是谁?
(课件出示:喜羊羊,美羊羊,懒羊羊)你们喜欢吗,喜羊羊,美羊羊,懒羊羊三个是好朋友,今天准备到慢羊羊家去做客,可是刚走了一半路,突然下起雨来,可是它们只带了两把伞,大家想想有几种打雨伞的方法?老师提示一下,可以先让一只小羊自己打一把伞,其余的两只小羊,再打另一把伞,
教案《《排列与组合》教案设计》。
学生可能出现的答案有:
①喜羊羊和美羊羊拼一把伞,懒羊羊自己打一把伞。还可以怎样打雨伞,
②美羊羊和懒羊羊拼一把伞,喜羊羊自己打一把伞。
③喜羊羊和懒羊羊拼一把伞,美羊羊自己打一把伞。当学生在回答以上方法时,教师根据学生的回答把图片贴在黑板上。有几种打雨伞的方法,三种。
师:大家想的办法都不错。咱们看看大屏幕,我请三名同学再清楚的说一说。
二、用开密码锁的方法进行数的排列活动
师:三只小羊到了慢羊羊家,却发现大门紧闭,门上还挂着一把锁(边说边在课件出示文字)咦,锁上还有一张纸条呢,让我看看纸条上写着什么呢?
(教师读纸条上写的内容:欢迎你们的到来,为了考考你们的智慧,请你们先想办法把这把密码锁打开,锁的密码提
示1:用1、2能摆成几个两位数?
提示2、请再用数字1、2、3摆出所有的两位数。
师:老师看一看你们是不是比喜羊羊聪明,老师给你们准备了数字卡片,在信封里。但是老师有要求:三人合作用数字卡片摆,并且让一个人把摆出来的数字记在白纸上,在动手之前先商量一下你们打算怎么摆,才能做到不重复,不遗漏,并且还要有一定的顺序?汇报找密码的过程。
生1:我先摆出12,然后再颠倒就是21………(师板书12、21、13、31,23、32、)
师:哦,你的意思是用十位和个位交换位置的方法。觉得这种方法好的同学请举手。老师给这种方法取一个名字叫(位置交换法)再请一名同学说说。谁愿意说说这种方法好在哪里?
生:很清楚,有规律。不重复,不遗漏,按一定顺序摆。师:你还觉得哪种摆法比较好?
生2:我先把数字1放在十位上,然后把数字2和3分别放在个位上组成12、13;再把2放在十位上……。
板书12、13、21、23、31、32)
师:你的意思是先确定十位上的数字。(十位固定法)请看大屏幕,我再请一名同学说说摆摆的过程十位是1的有哪些数?12、13,十位上是2的有哪些数,21,23,十位上是3的有哪些数,31,32,这样摆有什么好处?(不会重复,不会遗漏,有序。)除了先确定十位上的数字以外,还可以先确定哪位上的数字师:我先把数字1放在个位上,然后把数字2和3分别放在十位上、,他是先确定个位上的数字。)个位固定法师小结:看来以后碰到这样的问题,想摆得快又不漏掉,我们应该选择一定的顺序和一定的规律去摆就不会重复也不会遗漏。师:我们来看一下接下来的提示。密码提示3:密码就是这些数中最小的两位数。师:你们找到密码了吗?是多少?12
三。用握手的方法进行组合活动师:通过大家的帮忙,慢羊羊家的密码锁被打开了,三只小羊可高兴了。它们互相握手表示祝贺,慢羊羊说:“我考考你们,每两只小羊只能握一次手,三只小羊一共握几次手?我想大家一定和喜羊羊一样聪明,三人合作,每两人握一次手,一共握几次,请一组上前面表演,看大屏幕,看喜羊羊它们握几次手
四。排列组合的对比。
师:咦?为什么3个数字能组成6个不同的两位数,同样也是3种动物,只能握三次手小结:
2个数字可以交换组成2个两位数,而两种动物交换握手后还是这两种只能算一种。像这种排数跟顺序有关系的叫排列,握手跟顺序没有关系的叫组合。(板书:排列与组合)
五。练习:小羊们互相握手表示庆祝之后,他们决定去冒险。但是需要买一张地图,这张地图是五元钱,看看大屏幕,有一张五元钱,五张一元钱,还有两张两元钱,大家帮助小动物们想一想,可以怎样付钱你知道他们从慢羊羊家到城堡一共有多少种走法吗?师:从慢羊羊家到独木桥有2条路,我们把它标上A、B。从独木桥到城堡有3条路,我们标上1、2、3。从慢羊羊家到城堡有哪几种走法呢?想不想自己研究研究。
(1)每人都有一张地图,请你自己试试。
(2)反馈。预设1:师:有几种?生:有6种。师:哪六种?你能说的清楚一点吗?
生1:A1、A2、A3、B1、B2、B3。有6种走法。师:恩,用符号来表示非常清晰有序!他先确定的是?是A。生3:还可以A1、B1、A2、B2、A3、B3!师:非常会思考!不仅可以先确定A,还可以倒着想,先确定1。
六、总结:愉快的探险结束了,于是他们留在了城堡里,在这节课中你有什么收获呢?同学们总结的很好,通过与小伙伴的合作,能很有序的进行排列,不重复不遗漏。
其实在生活中还有许多事情,能采用今天有序思考进行排一排的事例,回去找找好吗?关大屏幕,看板书板书设计排列与组合有序无序一位置交换法二十位固定法三个位固定法教学反思:1创设情境,能激发学生兴趣。
1、既完成了教学任务,又保证了兴趣。三只小羊,只带了两把伞,一共有几种打雨伞的方法?引导学生发散思维,创设故事情境,符合学生年龄特点,让学生在故事中享受起来。
2、问题情境,也能激发学生兴趣。开密码锁,创设问题情境,出示了三个密码提示,激发了学生兴趣。
3、动一动,摆一摆,激发学生兴趣。用1、2、3摆出所有的两位数。学生三人合作,进行了摆一摆,激发了学生兴趣。三人合作,每两人只能握一次手,一共握几次手?学生通过实际握手,掌握了知识,激发了学生兴趣。老师化难为易,两个人交换握手,还是这两个人,只能算一次。
4、合作学习,也是激发学生兴趣的有效方法。这节课安排了两次合作学习,小组合作,提的要求很明确,语言清晰,保证了小组合作学习的有效性。合作学习出现的适时,恰到好处。达到了很好的教学效果。
5、电教多媒体使用,激发学生兴趣。幻灯片制作精美,学生兴趣很浓。6教师个人魅力,也能激发学生兴趣。我在这方面,做得有些欠缺。始终一个音量,有听觉的疲劳。语言应该有轻有重,有快有慢,抑扬顿挫。孩子能做的,我不做。孩子能读的,我不读,做个“懒老师”。
《排列与组合》教案 篇五
背景与导读
对于学习来说,人的最有价值的财富是一种积极的态度,让学生做课堂的主人。改变学生学习数学的状态是新一轮课程改革的首要任务之一,是每一个教育工作者面临的课题。教学中,教师要给学生营造民主、和谐、和富有个性的学习氛围,提供充分参与数学活动的机会,激起学生 学习兴趣和积极主动性,让每个学生都能快快乐乐地学习数学,成为学习的主人。
《排列与组合》是义务教育数学课程标准实验教科书数学(人教版)二年级上册的教学内容。排列与组合的思想方法不仅应用广泛,而且是学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。在教学中,我运用开放式教学方式,把课堂交给学生,让学生当好学习的主角。
片断与反思
(片断一)
师:森林学校的数学课上,猴博士出了这样一道题(课件出示)用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”小猪站起来说能写成3个,小熊说5个,小狗说7个,到底能写出几个呢?
生1:我猜有5个。
生2:我猜有8个。……
师:到底有几个两位数呢?请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。
学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)
生1:我写的数有12、21、13、32、23。
生2:我写的数有12、31、23、21、23、32。
生3:我写的数有12、13、21、23、31、32。
学生汇报所写个数,教师根据情况重点展示几份,引导学生发现问题:有的重复写了,有的漏写了。
师:每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的两位数,并做到不重复不遗漏呢?
学生以小组为单位交流讨论。
学生汇报:
生1:先写出1在十位上的。有12、13;再写出2在十位上的有21、23;再写出3在十位上的有31、32。
生2:用数字1、2能写出12、21;用数字2、3能写出23、32;用数字1、3能写出13、31。
生3:先写出个位是1的有21、31;再写出2在个位上的有12、32;再写出3在个位上的有13、23,小学数学教案《让学生做课堂的主人》。
(引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。)
(反思)
排列与组合是学生新接触的知识领域。在开课时用学生感兴趣的童话故事引入,易激起学生探究的兴趣。学生根据自己的实际情况选择不同的方法探究新知体现了不同的孩子用不同的方式学习数学这一新的教学理念,易于吸引不同层次的学生积极主动的参与到活动中来。
引导学生发现写数过程中出现的问题,并就此展开讨论、交流,遵循了学生的认知特点。学生在交流的过程中体验到解决问题方法的多样性,并根据自己的实际选择不同的方法,尊重了学生的主体地位。在此过程中学生收获的不仅是知识本身,更多的是能力、情感。这一过程中培养了学生主动探究的学习习惯,学生都能大胆的说出自己的见解、方法,也训练了说话能力。
(片断二)
故事引入
师:下课了小狗、小熊、小猪做“找朋友”的游戏,好朋友见面之后要握握手,每两只小动物握一次手,小狗、小熊、小猪一共握几次手?怎样握?
学生在充分独立思考的基础上展开小组交流,并3人一组亲身实践一下。
汇报思考的过程。
小组1:我们这一组中,我和另外两人各握了一次,他们两人握了一次,一共是3次。
小组2:我们这一组依次按顺序握手,也是握了3次。
师:刚才我们帮森林学校的小动物们解决了用数字1、2、3能写几个两位数;3只小动物每两个握一次手共握几次手的问题,森林学校的小动物们直夸同学们聪明呢!通过解决这两个问题你发现了什么?
生:用3个数字能写出6个两位数。
生: 3只小动物每两人握一次手共握3次。
生:排数时有顺序,顺序不同数就不同。而握手就只是两个人,不管顺序。
(引导学生明确排列与顺序有关而组合与顺序无关。)
师:小狗要参加学校的时装表演,妈妈为它准备了4件衣服(课件出示2件上衣、2件裤子的图片),请你帮小狗设计一下共有多少种穿法。如果需要的话可以用学具摆一摆。
学生交流想法。(略)
(反思)
通过比较,明确排列与组合两种问题的同与不同,便于建立起清晰的知识结构,进一步深化学生的认识。学习的目的是为了应用,安排用同一条故事主线贯穿整节课的始终,以问题串的形式展开全课,能让学生始终保持浓厚的学习兴趣,充分体验到数学与生活的联系。为小狗穿衣服的练习,学生能自主的选择方法进行,培养了学生的自主学习能力。在儿童的生活经验里已经积累了一些搭配衣服,购物花钱的知识经验,所以学生乐于参与。借助生活经验丰富学生数学思维,使学生体会到生活中处处有数学。实践证明,课堂中学生兴趣高涨,气氛活跃。学生运用数学知识解决了身边的问题,使学生的实践能力得到培养,同时使学生逐步学会用数学的眼光去观察和认识周围的事物,他们的数学能力、应用意识、实践能力得到培养和发展。
聪明在于勤奋,天才在于积累。上面这5篇《排列与组合》教案就是快回答为您整理的排列组合范文模板,希望可以给予您一定的参考价值。