1. 主页 > 知识大全 >

初一数学上册教案优秀10篇(初一数学全册上册教案)

作为一名教师,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?为了让大家更好的写作初一数学上册教案相关内容,快回答精心整理了10篇初一数学上册教案,欢迎查阅与参考。

初一数学上册教案 篇一

一、学生情况分析

本期担任七年级数学,该班共有学生46人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

二、教材及课标分析

第一章《有理数》

1.本章的主要内容:

对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理

数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

重点:有理数加、减、乘、除、乘方运算

难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的

理解。

2.本章的地位及作用:

本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关

键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。

3.本章涉及到的主要数学思想及方法:

a.分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。

b.数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。

c.化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。

d.类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。在学习过程中要时时考虑符号问题。用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。

4.教法建议(仅供参考)

a.在学完数轴一节课后,把利用数轴比较有理数的大小补充进来,提前讲解,在讲完绝对值后,在利用绝对值比较两个负数的大小,这样做既可以体会到数轴的用途,也可以避免两种方法放在一起给学生造成的混乱,而利用绝对值比较有理数的大小,写法上学生一般情况下掌握不好,这样可以着重训练学生的写法,分散难点。

b.注重联系实际:这本教材的编排更注重了知识来源于生活,反过来又应用到生活中去的思想。充分体现了生活中处处有数学,人人都学有用的数学的理念。因此,在每课的“创设情境”这一环节中,要充分注意这一点,充分利用生活实例引入新知识,使学生充分体现到学好数学是有用的,因而提高学生学习数学的兴趣。

c.对于绝对值一课的教法建议:对于绝对值的代数意义的理解,学生往往感到困难,教者可以告诉学生:两棍中间夹着一个人(整体),当它是正数和零时,两棍一扒拉,直接走出来,当它是负数时,两棍一扒拉,拄着拐棍走出来,比较形象,使学生容易理解,在《整式的加减》一章中,才可以顺利去掉绝对值符号,进行化简。

d.注重本章的选学内容:一个是第6页的“用正负数表示加工允许误差”,另一个是第40页的“翻牌游戏中的数学定到理”

第二章《整式的加减》

1.本章的主要内容:

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。

重点:去括号,合并同类项。

难点:对单项式系数,次数,多项式次数的理解与应用。

2.本章的地位及作用:

整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代

数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

3.本章涉及到的主要数学思想及方法:

a.整体数思想:主要体现在式子的化简求值问题中,有些题目采用整体代人的解题策略,可使计算简便。有些题目只有从整体考虑才能解决问

题。例如:已知:a-b=-3,c+d=2,求(b+c)-(a-d)的值

b.从“特殊到一般”,又从“一般到特殊”的数学思想:这主要体现在本章的习题中,都是根据实际问题列出式子,然后再根据具体数值求式子的值中。

c.对比思想:本章出现了单项式,多项式,同类项等概念,为了正确掌握这些概念,可在比较辨析中加深对概念的理解。

4.教法建议(仅供参考)

a.在讲多项式一节的内容中,增加多项式的升(降)幂排列的内容,为下一节对合并同类项的结果的整理提前做好准备。

b.注重本章的数学活动:第43页的数学活动,我认为很有价值,有一定的趣味性,也有较强的探索性,对于学生思维逻辑性的培养是很有价值

的,应给予学生充分的时间进行学习。

c.本章概念较多,应使学生首先牢记概念,在解决问题时,才能有意识地联系这些概念,以此为依据完成相关题目。

d.在求多项式的值的相关题目中,注意解题格式的要求,学生初次接触,往往不注意解题格式的写法。

第三章《一元一次方程》

1.本章的主要内容:

列方程,一元一次方程的概念及解法,列一元一次方程解应用题。

重点:列方程,一元一次方程的解法,

难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。

2.本章的地位及作用:

一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的`数学思想——方程思想,利用方程思想可以使许

多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。

3.本章涉及到的主要数学思想及方法:

a.转化思想:主要体现在利用方程的同解原理,将复杂的方程转化为简单的方程,直至求出它的解。

b.整体思想:例如:解方程3/2(3x+1)—1/2(3x+1)=5运用整体思想可以使解题步骤简捷,思路清晰。

c.数学建模思想:它是在对问题深入地思考、分析、抽象的基础上,用数学方法去解决实际问题,建立数学模型。方程是刻画现实世界的一个有效的数学模型。本章中的列方程解应用题就是培养学生的数学建模思想。

d.数形结合思想:这主要体现在列方程解应用题时,尤其是对行程问题的分析解决中。

4.教法建议(仅供参考)

a.本册教材为了更好地体现数学与生活的联系,在讲一元一次方程的解法时,都是先通过一道生活实际问题引入的,然后探讨方程的解法,我的建议是,对于引例的讲解,可以先用算术法,大部分学生习惯这种解法,再引导学生用方程的方法,从而使学生逐步认识到代数方法的优越

性。在列出方程后,引导学生探讨完方程的每一步骤后,熟练了应用这一步骤解方程后,在开始下一步骤的学习。

b.注重几种基本题型的应用题:商品利润问题,储蓄问题,行程问题,行船问题,工程问题,调配问题,比例分配问题,数字问题,等积变形问题。这是一些经典题型。同时注意一些图表型应用题,阅读理解型等新颖的应用题。

c.关注教材第95页的实验与探究:无限循环小数化分数,使学生意识到可以利用一元一次方程的知识将无限循环小数化分数,进一步体会方程

的应用。

第四章《图形认识初步》

1.本章的主要内容、地位及作用:

本章主要介绍了多姿多彩的图形(立体图形、平面图形),以及最基本的图形——点、线、角等,并在自主探究的过程中,结合丰富的实

例,探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

2.教学重点与难点

教学重点:(1)角的比较与度量。

(2)余角、补角的概念和性质。

(3)直线、射线、线段和角的概念和性质

教学难点:(1)用几何语言正确表达概念和性质。

(2)空间观念的建立。

3.本章涉及到的主要数学思想及方法:

a.分类讨论思想:本章经常遇到直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题,这时往往需要用分类讨论思想来解决。

b.方程的思想:在涉及线段和角度的计算中,把线段的长度或角的度数设为一个未知数,并根据所求线段或角与与其他线段或角之间的关系列方程求解,能清楚简捷地表示出几何图形中的数量关系,是解决几何计算题的一种重要方法。

c.由特殊到一般的思想:主要体现在依靠图形寻找规律的习题中。

4.教法建议(仅供参考)

a.在讲“几何图形”一节中,注意利用实物和几何模型进行教学,让学生通过认真观察、想象、思考加强对图形的直观认识和感受,从中抽象出几何图形,从而更好地掌握知识。

b.在讲立体图形平面展开图中,我建议让学生准备好粉笔盒等其它实物,亲自动手操作,全班集体归纳总结出正方体的11种平面展开图,

培养学生的空间想象能力,锻炼学生不用动手折叠,就能通过观察展开图,想象出立体图形的形状的能力。

c.在讲“直线、射线、线段”一节中,注重培养学生依据几何语言画图的能力,注意补充一部分“根据语句画出图形”的习题。

d.在涉及有关线段角的计算题时,大部分学生不是求不出结果,利用小学学的算术方法往往能给出答案。但不能很好地写出解题过程。因此对于这部分内容要逐步训练学生的简单说理能力。

初一上册数学教案 篇二

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______, 的相反数是______;

3、|0|=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三。例题精讲

例1. 求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四。练习

1. 填空:

⑴ 的符号是 ,绝对值是 ;

⑵10.5的符号是 ,绝对值是

⑶符号是+号,绝对值是 的数是

⑷符号是-号,绝对值是9的数是 ;

⑸符号是-号,绝对值是0.37的数是 .

2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7 (2) (3) (4)-5与0

五、布置作业:

P25 习题2.3 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

初一的数学上册教案 篇三

一:教材分析:

1:教材所处的地位和作用:

本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法

2:图表分析法

3:教学过程中坚持启发式教学的原则

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X 字串7 ”“—15%X”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

四:教学程序:

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

(二):教学简要过程:

1:复习提问:

(1):什么叫做等式?

(2):等式与方程之间有哪些关系?

(3):求X的15%的代数式。

(4):叙述代数式与方程的区别。

(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)

2:导入讲授新课:

(1):教具:

一块小黑板,抄212例1题目及相对应的空表格。

左边右边

(2):新课引述:

(3):讲述课文212例1:

(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(A)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)

指导学生设原来重量为X千克。这里分析等式左边:原来重量为X千克,运出重量为15%X千克,把以上填入表格左边。 字串7 分析等式右边:剩余重量为42500千克,填入表格右边。

(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)

把以上左边和右边的代数式分别代入(A)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

结合解题过程向学生介绍一元一次应用题解法的一般步骤:

课本215黑体字

3:课堂练习:

课文216练习1,2题

(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)

4:新课巩固:

学生对本节内容进行要小结:

列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)

5:作业布置:

课文221习题4-4(1)A组1,2,3题

(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)

五:板书设计:

4*4一元一次方程的应用:

例题:小黑板出示例1题目解:设原来有X千克面粉,那么运

相等关系:原来重量—运出重量=剩余重量出了15%X千克,依题意,得

等式左边:等式右边:X—15%X=42500

原来重量为X千克,剩余重量为42500千克。解这个方程:

运出重量为15%X千克。85/100*X=42500

解一元一次方程的一般步骤:X=50000(千克)

小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

初一上册数学教案 篇四

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、图1—2中,A,B,C之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

二、做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

综上所述这个题目条件不足,第三边无法求得。

2、练习P7§1.11

六、作业

课本P7§1.12、3、4

教学目标:

1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2.掌握勾股定理和他的简单应用

重点难点:

重点:能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1)(2))

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

=请同学们对上面的式子进行化简,得到:即=

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、讲例

1.飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作业

1、1、课文P11§1.21、2

2、选用作业。

初一数学上册教案 篇五

【对话探索设计】

〖复习

我们知道,所有的分数都可以写成两个整数的比。有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗?可以写成两个整数的比吗?是不是分数?

结论:所有的有限小数和无限循环小数都是分数。

〖探索1

小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?

结论:正整数﹑零﹑负整数统称整数。

〖探索2

下列负数哪些是负分数?

-12, ,-0.33, ,-12.03, .

〖探索3

所有正整数组成正整数集合,所有负整数组成负整数集合。请把下列各数填入它所属于的集合的大括号里:

1, 0.0708, -700, -, -3.88, 0, , 3.14159265, , .

正整数集合:{ }负整数集合:{ }

整数集合:{ }

正分数集合:{ }负分数集合:{ }

(注意:大括号内的'省略号表示什么?)

〖探索4

为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?

结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;

(2)分数一定是小数,小数不一定是分数。

〖探索5

整数和分数统称有理数。

在数-100, 70.8, -7, , -3.8, 0, , ,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

(友情提示:,都是小数,但都不是分数,自然也都不是有理数。你答对了吗?)

〖练习

P10.练习

【作业】

P18.习题1.

【补充作业】

1.列出竖式,把分数化为小数。(体会分数不可能是无限不循环小数。)

2.把下列小数化为分数:3.14159, .

【备选素材】

1.判断:

(1)一个有理数,不是正数,就是负数;

(2)一个有理数,不是整数,就是分数;

(3)一个有理数,是分数,就一定是小数;

(4)一个无限小数,如果不循环,就不是有理数;

(5)小数就是分数;

(6)有理数只能分成两类。

(7)负分数不是负数。

2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类。

3.分数可以分为有限小数和________________两类。

4.满足什么条件的小数才是有理数?

5.(1)列出竖式,把分数化为小数;(体会分数不可能是无限不循环小数。)

(2)有的小数不是分数,你能举出一个例子吗?

(3)说明为什么0.3是分数,而却不是。

6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类。

7.把下列各数填在相应的集合里:

-|-3|, -(-0.072), , -3.88, , 3.14, , .

初一数学上册教案 篇六

一、教学目标:

1.知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2.能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3.情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6_2,5,cd,-1,2_2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

《3.4合并同类项》同步练习

1.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.

2.若-4_ay+_2yb=-3_2y,则a+b=_______.

3.下面运算正确的是( )

A.3a+2b=5ab B.3a2b-3ba2=0

C.3_2+2_3=5_5 D.3y2-2y2=1

4.已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是( )

A.-5_-1 B.5_+1

C.-13_-1 D.13_+1

《3.4合并同类项》测试

1.下列说法中,正确的是( )

A.字母相同的项是同类项

B.指数相同的项是同类项

C.次数相同的项是同类项

D.只有系数不同的项是同类项

初一的数学上册教案 篇七

【教学目标】

1、经历探索去括号法则的过程,了解去括号法则的依据。

2、会用去括号进行简单的计算。

3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。

【重、难点】

理解去括号法则,熟练运用去括号法则。

【教学过程】

一、情境创设

在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元?

思考:如何合并你算出的这个代数式中的同类项?

同步测试

1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简)

(1)女生有多少人?

(2)男生比女生多多少人?

(3)全班共有多少人?

测试

【拓展提优】

14、如果A是三次多项式,B是三次多项式,那么A+B一定是()

A、六次多项式

B、次数不高于3的整式

C、三次多项式

D、次数不低于3的整式

15、多项式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()

A、与x、y、z均有关

B、与x有关,而与y、z无关

C、与x、y有关,而与z无关

D、与x、y、z均无关

16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()

A、4 B、6 C、8 D、10

17、当x=1时,代数式mx3+nx+1的值为20xx,则当x=—1时,代数式mx3+nx+1的值为()

A、—20xx B、—20xx C、—20xx D、—20xx

18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,则8a2—13ab—15b2等于()

A、2M—N B、3M—2N C、4M—N D、2M—3N

19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是()

A、4m cm B、4n cm

C、2(m+n)cm D、4(m—n)cm

初一的数学上册教案 篇八

学习目标

1.认识简单的几何体棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处,会对其进行简单分类。

2.认识点、线、面的运动会产生什么几何体。

学习重点

认识一些基本的几何体,认识几何体是什么运动形成的

学习难点

描述几何体的特征,对几何体,进行分类,认识点、线、面的运动能产生什么几何体。

行为提示:创景设疑,帮助学生知道本节课学什么。

行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成。

说明:学生通过观察、分析,掌握棱柱的分类方法,并能用自己的语言描述棱柱与圆柱的相同点与不同点。情景导入生成问题

先阅读教材第2页“想一想”上方的图片内容,并完成书中所提出的问题。

说明学生很容易找出以前学过的几何体以及与笔筒形状类似的物体,有利于学生从直观形象认识上升到抽象理性认识。

归纳结论与笔筒形状类似的几何体称为棱柱。

初一数学上册的教案 篇九

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的。主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。

采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。

教学过程

《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。

(二)探索规律,得出法则:

课件演示:(设置六个探究活动,以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为正,向右为负)让学生体会两个数相加的规律。

(1)同向情况:

1.情景

探究1:一条狗先向右运动5米,再向右运动3米,那么两次运动后的总结果是什么?

探究2:一条狗先向左运动5米,再向左运动3米,那么两次运动后的总结果是什么?

2.探究问题:有理数两个负数相加的和该怎么确定符号?怎么确定绝对值?(学生主动思考,展开讨论)

3.猜一猜,说一说(分组概括两个负数的加法法则):

①两数相加,取相同的符号,并把绝对值相加;

②负数加负数,取负号,并把绝对值相加。

4.例:(-4)+(-5)

(2)异向情况:

1.情景:

探究3:一条狗先向右运动5米,再向左运动3米,那么两次运动后的总结果是什么?

初一数学上册教案 篇十

4.1从问题到方程:教案

【学习目标】

1.探索实际问题中的数量关系,并学会用方程描述;

2.通过对多种实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型;

3.通过观察,归纳一元一次方程的概念。

【导学提纲】

1.左右两个图形中的天平都是平衡的,请回答以下问题:

(1)你能知道左图中的食盐有多少克吗?你是怎么知道的?

(2)右图中两个相同小球的质量相等,你能知道这两个小球的质量吗?

4.1从问题到方程:同步练习

1.(20xx?哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,则下面所列方程正确的是(  )

A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x

C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x

【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程。

【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得

1000(26﹣x)=2×800x,故C答案正确,

故选C

【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系。

《4.1从问题到方程》测试

1.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为_____.

2.某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____.

3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,根据题意可列方程得_____.

4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,若设这件T恤的成本是x元,根据题意,可得到的方程是_____.

博观而约取,厚积而薄发。快回答为大家整理的10篇初一数学上册教案到这里就结束了,希望可以帮助您更好的写作初一数学上册教案。