在教学工作者开展教学活动前,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!以下是快回答给大家分享的6篇四年级数学上册教案,希望能够让您对于小学四年级数学上册教案的写作有一定的思路。
四年级数学上册教案 篇一
教学目标:
1.复习角的计算。
2.通过对一些特殊角的计算和探索,为以后有关角的性质作铺垫。
3.小组合作,通过验证得到相等的角,培养学生科学的学习态度。
重点难点:
通过计算找到相等的角。
能从平面图形中找出相等的角。
教学用具:
课件
教学过程:
一、新课导入
昨天我们复习了角,并求了角的度数,下面我们先来做一道练习
已知∠COB=90°∠COD=38°,求:∠AOD=?
生1:∠AOD=∠AOB-∠COB-∠COD
=180°-90°-38°
=52°
生2:∠AOD=∠AOC-∠COD
=90°-38°
=52°
师:为什么∠AOC=90°?
因为∠AOB是一个平角,∠COB是一个直角,所以∠AOC必定也是一个直角。
∠COB和∠AOC都是90°的角,它们是一组相等的角,这就是我们这节课要学习的新知识。出示课题:相等的角。
二、新课探究
探究一
师:两条直线相交会形成几个角?在这四个角中有什么小秘密吗?
例:如图,两直线相交,得到的角分别为∠1,∠2,∠3,∠4,如果∠1=30°,∠2,∠3,∠4这三个角中哪一个角能马上知道度数了,为什么?
∠3是不是等于∠1的度数呢?能不能用我们已有的本领去想想办法能证明呢?四人小组讨论。
生1:解:因为∠1+∠2=180°,
所以∠2=180°—30°=150°,
因为∠2+∠3=180°,
所以∠3=180°—150°=30°。
生2:解:因为∠1+∠4=180°,
所以∠4=180°—30°=150°,
因为∠4+∠3=180°,
所以∠3=180°—150°=30°。
小结:有的同学先利用平角求出了∠2的度数,再根据∠2与∠3的关系求出了∠3的度数;也有的同学是先利用平角求出了∠4的度数,再根据∠4与∠3的关系求出了∠3的度数,不管从什么角度去思考,最终的结论是一致的,∠3=30°。
师:在你们刚才的探究过程中,还发现了什么?
生3:(∠2和∠4也是一组相等的角。)
跟进练习
两条直线相交会形成两组相等的角,这个结论是否带有普遍性呢,还是仅仅是偶然?下面我们把这一题的条件做些变化,请你再一次通过计算,看看是否存在两组相等的角?
例:如图,两直线相交,∠2=145°,请你通过计算验证一下∠1和∠3,∠2和∠4是否是两组相等的角。
学生独立练习。
生:(略)
小结:两条直线相交,必能形成两组相等的角。
探究二
生:解:因为∠1+∠2=90°,
所以∠1=90°—60°=30°,
因为∠2+∠3=90°,
所以∠3=90°—60°=30°,
∠1=∠3=30°。
师:如果∠2=65°,∠1与∠3还相等吗?
生:因为∠1+∠2=90°,∠2+∠3=90°,
∠1和∠3都等于90°—∠2=25°,
所以∠1=∠3。无论∠2等于几度,
在这题中∠1和∠3的度数都是相等的。
跟进练习
两人一组动手操作,用两把一样的三角尺摆一摆相等的角,对你的同桌说说理由。学生操作演示。
小结:要摆出一组相等的角,我们首先要找到三角尺中两个一样大小的角,将这两个角部分叠放,没有重叠的部分所形成的两个小角它们必定是一组相等的角。
三、课内练习
练习一
找一找下图中有没有相等的角,说一说理由。
生1:∠1 = ∠3
生2:∠2 = ∠4
练习二
找一找下图中有没有相等的角,说一说理由。
生:∠2 = ∠3
练习三
找一找下图中有没有相等的角,说一说理由
为什么第三幅图中没有相等的角呢?
课堂小结
四、本课小结
这节课我们找了图形中相等的角,知道了当两条直线相交时会形成两组相等的角;还知道了将两个相等的角部分叠放在一起时,没有重叠的部分所形成的角也是一组相等的角。
课后习题
五、课后练习
在你的生活周围有没有相等的角,请你找一找,并向你的伙伴们说一说。
四年级数学上册教案 篇二
教学目标:
1、初步认识圆,了解圆的基本特征。知道什么是圆心、半径和直径,以及半径和直径之间的关系。
2、通过观察、操作、交流等活动,发展学生的空间观念,培养学生的思维能力。
3、感受圆之美,渗透数学文化。
教学重点:知道什么是圆心、半径和直径,以及半径和直径之间的关系。
教学难点:了解圆心、半径和直径,以及半径和直径之间的关系。
教具、学具准备:圆形物体、简易的画圆工具、圆规、直尺
教学过程:
一、引入新课
1、播放动画:平静的水面丢进小石子,泛起圆形的波纹。
师:生活中,你还在哪儿见过圆?(生举例)
出示:在一切平面图形中,圆最美。(图片欣赏)
2、了解圆与其他平面图形的区别,感知圆的特征,并揭示课题。
【通过感知生活中的圆,唤起学生相关的生活经验,体会到圆在生活中无处不在,感知圆形的美。通过观察圆与其他平面图形的区别,初步感知圆的特征,激发学生主动学习的欲望。】
二、新知学习
(一)画圆
1、尝试画圆,初步感知圆的特征。
学生可能出现的画圆方法:
(1)用圆形物体描圆;
(2)利用老师制作的画圆工具画圆;
(3)用圆规画圆。
2.学生第二次用圆规画圆,深化认识。
(集体学习,同伴互助学习用)
板书:定点、定长、旋转一周。
师:你们有没有见过体育老师在操场上是怎么画圆的?(课件展示)
老师也可以仿照体育老师的方法,利用绳子和粉笔在黑板上画圆,你有什么要提醒老师的?
【通过学生自主画圆与教师的示范画圆,使学生的思维形成梯度,有利于学生对圆的本质的理解,并为下面进一步认识圆的特征做好铺垫。】
(二)认识圆心、半径和直径
1、教师用圆规画一个圆。
2、揭示圆心及半径,进而介绍各自的字母表示。
3、思考:半径有多少条?长度怎样?你是怎么发现的?
4、介绍墨子的发现
早在二千多年前,我国古代思想家墨子在他的著作《墨经》中这样写道:“圆,一中同长也。”(媒体出示)
你是如何理解所谓“一中”和“同长”的?
5、由“同长”引出直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
【通过介绍中国古代思想家的研究成果,揭示出圆各部分的名称及基本特征,同时让学生感受圆所包含的文化内涵。】
三、巩固练习
1、判断
(1)画圆时,圆规两脚间的距离是半径的长度。()
(2)半径3厘米的圆比直径6厘米的圆小。()
(3)同一个圆中,所有的直径都相等。()
(4)两条半径一定能组成一条直径。()
(5)判断下面两幅图,那幅图在画圆时体现出定点的作用,那幅图体现出定长的作用。(出示图片:奥运五环和射击靶)
2、出示古代的阴阳太极图
想知道这幅图是怎么构成的吗?原来它是用一个大圆和两个同样大的小圆组合而成的。现在,如果告诉你小圆的半径是5厘米,你又能知道什么呢?
【通过练习,巩固所学的知识,体现数学学习的价值。】
课堂小结。
拓展提升,在比较中深化认识。(机动)
1、体会正多边形与圆之间的内在联系
【比较圆与正多边形的关系,体会曲线图形与直线图形的内在联系,提高学生的认知水平。】
四年级数学上册教案 篇三
教学目标
1.让学生经历量角器产生的过程,渗透实践出真知的思想意识。
2.认识1度的角,能正确的使用量角器进行角的度量。
3.让学生通过自主探究、合作交流,体验发现问题、提出问题、解决问题这一探究过程,激起学生的探究欲望,培养学生的探究能力,掌握用量角器量角这一技能。
教学重难点
教学重点:经历量角器产生的过程
教学难点:能正确的使用量角器进行角的度量。
教学工具
ppt课件
教学过程
一、创设情境、提出问题
师:同学们请看屏幕。(出示三个滑梯)玩过吗?
生:玩过
师:大家都玩过!想玩哪个?
生1:第三个,这样可以滑的快一些
生2:第一个,我想滑的慢一些,我会害怕
师:观察一下,这三个滑梯有什么不同?
生1:有高有矮
师:哦,你的意思是说它们的角度不同?原来角也有大小啊?生活中我们一般以2号滑梯为标准,今天这节课我们以2号滑梯所形成的角∠1为例一起研究:角的度量(板书)
二、主动探究、合作学习
1.明确测量标准要统一,为“度”的出现作准备
师:∠1有多大呢?我们可以借助一些学具来表示它的大小,老师为大家准备了∠1和一些学具,在1号学具袋中,请小组长打开,小组合作,借助学具表示出∠1的大小。
学生动手测量
师:量完了吗?谁能到前面来介绍你是怎样量的?
生边操作边解说:角的顶点对齐,一边对齐
师:你们这个方法非常好,老师帮你把它记录下来(板书:角顶点边)
师:得到是结果是:3个(板书)
师:还有不同的测量结果吗?
生:2个。
师:还有吗?
生:1个
师:我们测量的都是∠1,但测量结果的结果为什么不一样呢?把你们的小角举起来看一下
生:我们用来测量的角大小不一样
师:也就是标准不统一,所以测量同一个角的结果不一样,要想获得统一的测量结果应该怎么办?
生:用同样大的角来量
2、引出半圆
师:好主意!下面我们采用统一的标准角在小组内再来测量∠1的大小,这个统一的标准角就放在2号学具袋里,请小组长打开
生操作测量
师:哪个小组交流一下?说说你们小组测量的结果是多少?你是怎样测量的?能边操作边解说吗?
生:角的顶点对齐,一边对齐
师:哦,你在测量的过程中也注意到了(指板书)角的顶点与量角工具的顶点对齐,角的一边与量角工具的一边对齐!谢谢你的交流!
师:老师这里还有一个钝角,你能量出它包含了几个这样的标准角吗?谁到台上量一量?
生边操作:顶点对齐,一边对齐
师:我刚才注意到这个同学在测量这个角时,把这个半圆又展开了一部分,(问生)你为什么这么做?
生:三个小角不够了
师:你真聪明!
师:我们再来测量一个角,大家看这是个什么角?(生:平角)谁来测量一下这个平角?
生边操作:顶点对齐,一边对齐
师:你把这个半圆全展开了!数数你的测量结果
生:8个
师:操作非常规范,请回
师:我们刚才用统一的标准角测量了几个角的大小,想一想,这几位同学在测量每一个角的操作过程中,注意了些什么?
生:顶点对齐,一边对齐
师展示:这些同学都把角的顶点对齐了半圆的这个点,我们给它取个名字叫做中心点(板书),我们刚才说了,测量时角的哪一部分和中心点对齐?(生:顶点)
师:看来这个量角工具真是方便啊,为了让大家看的更清楚,老师把这个工具搬到课件上,再用它来量一个角(课件展示,一锐角不能量)老师也注意到了角的顶点和量角工具的中心点对齐,角的一边与量角工具的这条线对齐。用这个测量工具测量这个角,同学们觉得合适吗?(不合适)怎么办?小组讨论一下
生:把半圆多折几次
师:你的意思是说把半圆平均分的份数再多一些,对吗?
3、引出并认识量角器
师:你的想法真好,已经非常接近科学家们的思想了!其实早在很多年前科学家们已经发明了量角器来测量角的大小,量角器把半圆平均分成180份,其中的任何一份都是1度,记作1°(板书)我们来看0刻度线到1刻度线之间所形成的角就是一个1°的角(课件演示)你还能再找一个1°的角吗?
生1:1刻度线到2刻度线之间就是1°的角
生2:100刻度线到101刻度线之间就是1°的角
师:你能找一个3°的角吗?
生:0刻度线到3刻度线之间就是3°的角
师:谁到黑板上来写一个3°?
生写
师:你写的真规范,请回
师:我们把0刻度所对应的这条线叫做0°刻度线,如果用量角器来测量角时猜测一下0°刻度线与角的哪一部分对齐?
生:角的一边(板书)
师:我们来读一下刚才那个角的度数。
生:39°
师:你是怎么读的?根据角的哪一部分读出的39°
生:角的另外一条边
师:好方法!老师帮你记录下来(板书:另一边度数)
师:再来尝试一下(课件出示两个角)
生读数
师:在3号学具袋中就有一个量角器,请同学们打开,仔细观察手中的量角器与屏幕上的有什么不同?
生:还有一圈数
师:哦,也就是量角器有两圈数字,观察手中量角器这两圈数字有什么区别?(屏幕给出内刻度线)
生:内外圈数字相反
师:也就是说:外圈从左向右顺时针数内圈从右向左逆时针数
师:多了一圈数字,也就多了一条0°刻度线,为了区分,我们把中心点左边外圈所对应的这条0°刻度线叫做外0°刻度线,把中心点右边内圈所对应的这条0°刻度线叫做内0°刻度线。
师:大家对量角器已经有了初步的了解,能不能借助量角器读出下面这几个角的度数呢?请看大屏幕
(30°的角)
生:30°
师:你是怎样读数的?读的是哪一圈刻度?
生:角的一边对齐内0°刻度线,我读的是内圈刻度
师:再来读一个角
生:130°
师:这个钝角是多少度?
生:150°
师:请同学们总结一下,什么时候读内圈刻度?什么时候读外圈刻度?小组讨论一下。
师:大部分小组已经有了自己的观点,哪个小组来交流一下
生:角的一边对齐外0°刻度线就读外圈刻度,角的一边对齐内0°刻度线就读内0°刻度线
师:同学们真棒!在这么短的时间内就学会了借助量角器读出角的度数!
5、用量角器测量角
师:这个角是多少度呢?我们一起来测量一下吧!同学们仔细观察,老师在量角时注意到了什么?
生:顶点与中心点对齐,一边与0°刻度线对齐,另一边读度数(生边说,课件边出示)
师:想不想亲自量一量?(想)请同学们用手中的量角器测量这张练习纸上的每一个角的度数并做好记录(练习卡上有锐角、直角、钝角、平角、周角开口不同,边长不同)开始!
学生开始测量
师:都测量好了?谁来交流一下测量结果?
生:这个直角是90°,这个钝角是130°,这个锐角是60°这个平角是180°,这个周角是360°
师:你能不能演示一下这个钝角的测量过程
生:把量角器转一下,顶点与中心点对齐,一边与0°刻度线对齐,另一边读度数,所以是130°
师:你能再演示一下这个周角的测量过程吗?
生:转半圈是180°,它转了一圈就是两个180°,也就是360°
师:从这里你可以看出周角和平角有什么关系?
生:我发现一个周角等于两个平角等于四个直角(师板书:1周角=2平角=4直角)
师:谢谢你聪明的小伙子
师:回忆一下刚才用量角器测量角的过程中,经历了怎样的步骤?
生:顶点与中心点对齐,一边与0°刻度线对齐,另一边读度数(师补充板书)
师总结:这位同学总结的真好!在用量角器测量角时,就应该注意到这几点(指板书),也就是:中心对顶点,0线对一边,他边看度数,内外要分辨
7、画角
师:同学们,你们知道吗?量角器除了量角还可以画角呢!想试一下吗?(想)请尝试着用量角器画一个40°的角
生尝试画角
师:谁上台来交流一下?你能把你的画角过程演示一遍,画一个40°角吗?
生:我先画一个点,再画一条线,在40°的地方点一个点,在连起来
师:操作非常规范
师:我们一起回顾刚才的画角的过程(课件)
首先确定角的顶点,它与谁对齐?
接着确定角的其中一条边,它与谁对齐?
然后确定角的另一条边
最后把顶点与这一点相连,我们画的这个角就是一个40°的角
三、课堂总结
师:同学们积极动脑踊跃发言,出色的完成了本节课的学习任务。通过这节课的学习,你有哪些收获?
四、拓展训练
师:最后有几个问题需要在课下认真研究一下用这个坏掉的量角器能否量出角的度数?
四年级数学上册教案 篇四
教学内容:
人教版四年上册数学教科书P.58例4及练习九。
教学目的:
让学生学会乘法估算方法,并会根据实际情况选择估算方法。
教学重点:
掌握乘法估算的方法,会进行乘法估算。
教学难点:
培养学生估算的意识,灵活解决实际问题的能力。
教学过程:
一、知识链接,引入新课
1、口算:20×40= 130×50= 100×90= 2100×3= 3000÷6= 4×23= 2100÷7= 28×3=20xx×7= 50×6= 800×5= 720+58=
2、估算:89×30 32×48 43×22 35×19 24×39 63×29 71×80 52×683、
师:学校组织秋游活动,我们四年级同学去××公园,去那里的费用是每人49元,包括客票和公园门票,四年级全年级共有104人,老师大约应该准备多少钱呢?这就是今天要学习的内容:乘法估算
学习目标:学会乘法估算方法,并会根据实际情况选择估算方法。
二、指导自学
1、你们能帮老师估算一下大约应该准备多少钱吗?
2、独立估算,并写出估算过程。
三、学生自学
1、学生独立完成自学指导,教师巡视指导。
1)小组内学生交流各自的估算方法和结果。并说明理由。
2)全班交流。反馈学生估算结果。
3)鼓励学生说出多种想法。对估算结果进行评价。师:你认为谁估计得更接近准确的钱数呢?为什么?在估算的时候你是怎么做的?
小结:接近准确值(符合实际);计算方便(将两个因数看成整十、整百或几百几十的数)。
2、检测自学效果运水公司为居民运送纯净水,一月份运送718桶,照这样计算的话,估算一下,全年可以运水多少桶?
四、达标检测
你是怎样估算的?《新编小学生字典》有592页,大约是()页。小明每分钟打字108个,大约是()个。李平大叔今年收橘子1328千克,大约是()千克。小明同学走一步的平均长度是62cm,他从操场这头走到那头共走了252步。操场大约长多少米?a1800米b1200米c1500米3沙坪小学有学生612人,全乡有这样的小学19所,全乡约有多少名小学生?燕鸥从北极飞到南极行程是17000千米,如果他每天飞780千米,20天能飞到吗?
五、小结:通过这节课的学习,你有什么收获和体会?
六、课堂作业:第63页8、9、10、11、12。
七、教学反思
小学四年级上册数学教案 篇五
教学内容:
北师大版四年级数学上册《温度》(87~88页)
教材分析:
教材创设温度的情境,通过冷热之间差异的比较,来帮助理解正负数的意义。温度计直观显现,就相当于一个竖直摆放的数轴,学生可比较容易的观察到零上与零下温度或正负数之间的差异。
学情分析:
学生经常从实际生活、电视中接触温度,对温度不陌生,容易掌握,主要是引导学生理解零上与零下的区别,在实际中怎样表示温度以及零下温度的比较有一些难度。
教学目标:
1、使学生利用温度的情境了解正负数的表达方法,感受引入负数的必要性,了解生活中零下温度的表示方法,并会正确读写。
2、结合具体情境让学生经历看一看、比一比、说一说、连一连、排一排等活动培养学生的观察能力,概括能力以及逻辑思维能力,培养学生的合作意识,使学生掌握比较两个零下温度高低的方法。
3、通过小播报员等活动,使学生了解冬季我国南北方气温存在着较大差异。让学生在数学活动中体会成功的快乐,感受数学与现实生活的紧密联系,培养学生学习数学的兴趣。
教学重点:
利用温度的情境了解正负数的表达法,感受引入负数的必要性,会正确读写。
教学难点:
会比较两个零下温度的高低。
资源利用:
电子白板课件 温度计 温度计示意图 一杯冰水 一杯温水
教学过程:
一、 创设情景,引入新知。
1.首先,大家听老师描述两幅情景,闭上眼睛在脑海中浮现这两种情景,听完后说说自己感受到了什么?
情景一:火辣辣的太阳炙烤着大地,知了不停地在树上吵着,尽管街上的行人撑着太阳伞,尽管人们已经穿的短袖、短裤,尽管人们嘴里还吃着冰淇淋,可是额头上的汗依然不停地在冒着。
情景二:寒风呼啸、雪花漫天飞舞,人们穿上了棉袄大衣,戴上了棉帽手套,还围上了厚实的围巾,但是街上的行人依然紧缩着脖子,瑟瑟发抖。
2.指名说感受。
3.引入课题:冷和热就是温度在发生变化,这节课我们就来学习——温度
(板书课题)。
二、探究新知
(一) 温度的表示方法
1.听一段视频播报,明确要求:用彩笔用自己喜欢的方式记录西安、新疆这两地的气温。
2.播报:西安8℃至13 ℃;新疆-4℃至5℃。
3.教师巡视梳理学生的表示方法。
4.展示、交流、比较几种表示方法,优化得出“+、-”。
①这个“-”在这里表示什么?(表示零下的温度)
师引导生观察比较得出,用一个正负号就把零上和零下这两种相反
意思表达来,这就是数学所特有的简洁美!
②这里的“-”不是减号,叫负号,读作:零下1摄氏度或者负1摄氏度。那零上9摄氏度该怎么表示?(在5℃前写+号)这个+号在这里叫做正号,它表示什么意思?
板书:+5℃ -4℃ 正号 负号
③通常的5℃前面写不写“+”?
归纳出:正数前面的“+”可以省略,但负数前面的“-”不能省略。
谈谈生活中你都见过哪些温度?
(1)冰箱门温度显示 ,认识温度单位:摄氏度 ℃
摄氏度是目前世界使用比较广泛的一种温标,用符号“℃”表示。它是18世纪瑞典天文学家安德斯·摄尔修斯提出来的。后人为了纪念他,用他的名字第一个字母“C”来表示。
认识温度计
人们是利用什么工具来测量温度的呢?(温度计)
小小的温度计竟能知冷知热,简直太神奇了,那么大家想不想了解它?(想)
(1)各种温度计,让生了解不同样式的温度计。(课件出示)
(2)投影出示常用的测量室温的温度计,让学生仔细观察,在温度计上都发现了什么?
(3)指名汇报
①温度的单位℃ ②红色液柱,会升高下降
(二) 练习读写温度
1.读出温度计上显示的温度。(出示课件)15℃、0℃、-15℃
2.同学们会看温度计了吗?(利用屏幕幕布功能依次出现三个温度计。)
指名依次先说出并写出三个温度计上所示的温度。
随机比较这三个温度,说说谁、谁最低。
(三)感知温度
1.出示温度计示意图
(1)指名让生分别读出零上和零下的一些读数。
(2)通过闭着眼睛试着说温度计上的读数这一活动,让生初步在头脑中建立温度计模型。
(3)教师给出以下温度,以0℃为基准,让生用手比划是零上温度↑或零下温度↓。
8℃ -5℃ 15℃ -15℃ -20℃
2.测温度
(1)出示两个杯子:一杯温水,一杯冰水混合物。
(2)先估计它们的温度,再用两个温度计同时测量两杯水的温度。
3.认识0℃
(1)问一名学生:你今天带了几支钢笔?(0支)
0什么意思?(表示没有)
那么0℃表示没有温度吗?
(2)指名谈谈对0℃的认识。
(3)小结:温度是表示物体的冷热程度的,任何物体都有温度。0摄氏度只是温度中的一个值,也是天气中零上和零下的分界点,在物理中表示冰的熔点。大于0度,冰开始融化为水,小于0度,水开始结冰。
科学家把标准大气压下,冰水混合物的温度定位0℃,读作:0摄氏度。沸水的温度定为100℃。
4.用线把对应的温度连起来。(利用白板的书写功能)
零上12摄氏度 零下10摄氏度 零摄氏度 零下16摄氏度
-10℃ +12℃ -16℃ 0℃
(1)先让生读出第一行的温度。
(2)指名汇报连线。
5. 读温度,使学生知道同一时间段我国南北方温度存在着较大差异。
大家刚才表现的都很棒,为了奖励大家,老师决定带大家到哈尔滨市的冰雪节看看。(课件出示)
哇!大家都为冰雕世界带给我们的视觉冲击感到震撼!
(1)那一天哈尔滨市的气温是多少呢?其他城市气温又如何呢?请看屏幕。
这是老师收集到的那一天几个主要城市的温度,谁能当一下播报员,把这天的天气情况向全班同学播报出来?(国家地图)
(2)让学生当小播报员播报。(利用白板的探照灯功能)
(3)通过比较部分南方和北方城市的气温,知道同一时间段我国南北方温度存在着较大差异。
三、巩固练习
1.估一估
(1)出示我们当地几幅不同季节的图片,与合适的温度连线。使学生知道我们当地不同季节的气温情况。(利用白板的书写功能连线)
夏天短袖 毛衣外套 棉袄棉鞋(冰雪)
-8℃ 36℃ 19℃
2.比较-5℃与-20℃两个温度的高低。(出示教材88页练一练一的情境图)
指名交流汇报。
3.下表是天气预报给出的我国部分城市某日的气温。(课件出示)
(1)北京与沈阳哪个城市温度高?
(2)把这5个城市的气温按照从低到高的顺序排列起来。(利用白板的拖拽功能指名让学生排列)
< < < <
四、拓展延伸
指着板书:新疆气温5℃,最低气温-4℃,它的温差是多少?
(1)借助温度计示意图,让同桌讨论。(2)交流汇报。(3)归纳方法。
五、课堂小结
你本节课有哪些收获?还有哪些困惑?
小结:生活中处处有数学,只要做生活的有心人,我们可以用学到的数学知识解决生活中的很多问题。
六、作业布置
1.课后查资料搜集了解一些其他物体的温度。
(如:月球表面的温度、太阳表面的温度、一些金属的熔化温度等)
2.生活中除了有的温度带有“-”号,你还见过带“-”的数吗?
搜集一些下节课交流。
小学四年级上册数学教案 篇六
教学目标:
进一步认识中括号,会用含有中括号的算式解决问题
教学过程:
一、问题反馈
1.漫谈自学收获:同学们,课前我们已经观看了有关中括号的视频,说说,你都有哪些收获?
(交流要点:有中括号的算式的计算顺序。)
2.预习单中的问题交流。
订正错题。这道题为什么错了?应该怎样改正?
看来同学们学得很不错。
二、疑难突破
那,在自学过程中,你还有哪些疑问?(引导学生提问)
师问:有了小括号,为什么还要引入中括号?也就是中括号到底用在哪儿?是否是只计算来用?
当然不是了,很多时候,咱们学习的运算是为了解决问题服务的,那这节课,咱们就来体验一下,如何用含有中括号的算式解决问题。板书课题:中括号
三、合作提升
1. 出示情境:面包8元/包,蛋黄派12元/包,巧克力的单价是面包与蛋黄派单价和的2倍。
你能提出什么问题?(巧克力的单价是多少?)怎样列算式?(出示分步算式与综合算式)
小明带了80元,根据这个信息,你又能提出什么问题?
(可以买多少盒巧克力?)
2. 那个问题怎样解决?请你列出分步算式与综合算式。(将学生的做法写在小板上,贴出来。分步正确的,综合错误的,综合正确的三种)
3. 交流
谁来说说你每步求的是什么?
辨析
80÷ (8+12)×2
80÷[(8+12)×2 ]
哪一种是正确的?为什么?
是呀,第一种算式只套了一个小括号,这里要先算小括号里的,再应该先算除法,再算乘法,而我们应该先算乘再算除,这里已经有了一个小括号了,再不能套小括号,那样就乱了,为了避免混乱,所以就用一个中括号。
是呀,在已经有了小括号的式子里,当再次需要改变运算顺序时,这时就需要另外一种符号,中括号就出现了。
对比:对比分步算式与综合算式,哪种算式书写更简洁?(综合算式)是呀,这就是人们为什么发明中括号了,它既能改变运算顺序,同时可以使我们的书写更加简洁。
4. 引申
你会用中括号吗?来试一试吧。先填空,再列综合算式计算
交流:为什么要在这里加上一个中括号?
5. 解决问题
看来,同学们已经会运用中括号列出综合算式了,那接下来的几道问题应该都难不住大家。
(1)航模组有男生8人,女生4人。美术组人数是航模组的2倍。合唱组有72人。合唱组人数是美术组的几倍?(列综合算式解答)
(2)小明包了18个包子,小刚包的个数是小明的2倍,小洁包的比小明与小刚的和还多6个,小美包了20个包子。小洁包的个数是小美的几倍?(列综合算式解答)
6. 拓展
老师这里还有几道题,你能说出每道题的运算顺序吗?和同桌说一说吧。
这个对于大家都是小菜了,那咱们加大点儿难度。
象老师这样说
180÷4+2 ×3,我们可以说180与4的商加上2与3的积,和是多少?
180÷(4+2)×3,这道算式可以怎么说呢?
(180÷4+2)×3
180÷[(4+2)×3]
还是这四道算式,如果编成应用题,又可能是什么样的应用题呢?这个留作大家课后思考。
四、梳理总结
同学们,通过这节课的学习,你有哪些收获?
括号是一种运算符号,它的作用在于表明运算的顺序。小括号“( )”是17世纪荷兰数学家吉拉特开始使用的。之前法国数学家韦达使用过中括号“[ ]”。改变运算顺序的除了以前学习的小括号,今天学习的中括号,还可能有什么?大括号?同学们很善于联想。象这个就是大括号,你觉得这道题的运算顺序是什么?
是的,很多知识都是相通的,只要我们善于思考,敢于联想,会发现更多知识间的奥秘。
课堂检测
72÷[960÷(245-165)]
(960÷40-10)÷2
小军从家到少年宫走了14分钟。用同样的速度,他从家到学校要走多少分钟?
他山之石,可以攻玉。以上就是快回答给大家分享的6篇四年级数学上册教案,希望能够让您对于小学四年级数学上册教案的写作更加的得心应手。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。