1. 主页 > 知识大全 >

七年级数学上册教案优秀13篇(七年级数学详细教案)

作为一位兢兢业业的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。如何把教案做到重点突出呢?这里快回答为大家分享了13篇七年级数学上册教案,希望在人教版七年级数学上册教案的写作这方面对您有一定的启发与帮助。

人教版七年级数学上册教案 篇一

1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系。

2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识。

进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系。

分析题目中的数量关系,用式子表示数量关系。

(设计者: )

一、创设情境 明确目标

青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程。

(1)2 h行驶的路程是多少?3 h呢?t h呢?

(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

二、自主学习 指向目标

自学教材第54至55页,完成下列问题:

1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

(1)列车2 h行驶的路程为__200__km.

(2)列车3 h行驶的路程为__300__km.

(3)列车t h行驶的路程为__100t__km.

2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

三、合作探究 达成目标

用字母表示数

活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

(4)用式子表示数n的相反数。

【展示点评】解答过程见教材第54页例1的解。含有字母的式子中如果出现乘号,写成“·”或省略不写。如第(3)小题,就不能写成a2·h.

【小组讨论】用字母表示数有什么意义?

【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来。

【针对训练】见“学生用书”。

用字母表示简单的数量关系

活动二:阅读教科书例2中的四个问题,思考:

顺水行驶时,船的速度=________+________;

逆水行驶时,船的速度=________-________.

解答过程见教材第55页例2的解答过程。

【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系。

【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系。

注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

2.字母和数字相乘时,省略乘号,并把数字放到字母前;

3.出现除式时,用分数的形式表示;

4.结果含加减运算的,需要带单位时,式子要用“()”;

5.系数是带分数时,带分数要化成假分数。

【针对训练】见“学生用书”。

四、总结梳理 内化目标

1.用字母表示数的意义。

2.用含有字母的。式子表示数量关系的意义。

3.用含有字母的式子表示数量关系时要注意的问题。

实际问题―→用字母表示数―→用字母表示数量关系

《2.1整式》同步练习含答案

1. 其中长方形的长为a,宽为b.

(1)阴影部分的面积是多少?

(2)你能判断它是单项式或多项式吗?它的次数是多少?

《2.1整式》课后练习含答案

知识要点

1.单项式:只含有数和字母的乘积的代数式叫做单项式。单独的一个数或一个字母也是单项式。它的本质特征在于:

(1)不含加减运算;

(2)可以含乘、除、乘方运算,但分母中不能含有字母。

2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数。单项式中的数字因数叫做这个单项式的系数。

3.多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项。一个多项式中,次数最高的项的次数,叫做这个多项式的次数。

4.整式:单项和多项式统称整式。

人教版七年级数学上册教案 篇二

【教学目标】

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

【重点难点】

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

【教学准备】

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

【教学过程】

一、创设情境

多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.

设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.

二、讨论(动态研究)

课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.

让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

三、讨论(静态研究)

教师展示图片(建筑或生活的实物等),让学生找找生活中的。平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

四、探索

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

五、作业

1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.

2、阅读教科书第119页的实验与探究,并思考有关问题。

人教版七年级数学上册教案 篇三

教学目标

【知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

【过程与方法目标】

【情感态度价值观目标】

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

【教学重点】

数轴的意义及作用。

【教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的`用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,-10/3

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

人教版七年级数学上册教案 篇四

教学目标:

知识与能力

能正确运用角度表示方向,并能熟练运算和角有关的问题。

过程与方法

能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

情感、态度、价值观

能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

教学重点:方位角的表示方法。

教学难点:方位角的准确表示。

教学准备:预习书上有关内容

预习导学:

如图所示,请说出四条射线所表示的方位角?

教学过程;

一、创设情景,谈话导入

在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

二、精讲点拔,质疑问难

方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

三、课堂活动,强化训练

例1如图:指出图中射线OA、OB所表示的方向。

(学生个别回答,学生点评)

例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

(小组讨论,个别回答,教师)

例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

(教师分析,一学生上黑板,学生点评)

四、延伸拓展,巩固内化

例4某哨兵上午8时测得一艘船的位置在哨所的'南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

(1)请按比例尺1:000画出图形。

(独立完成,一同学上黑板,学生点评)

(2)通过测量计算,确定船航行的方向和进度。

(小组讨论,得出结论,代表发言)

五、布置作业、当堂反馈

练习:请使用量角器、刻度尺画出下列点的位置。

(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

(3)点C在点O的西北方向上,同时在点B的正北方向上。

作业:书P1407、9

人教版七年级数学上册教案 篇五

教 案

第一章 有理数

(1)本周小张一共用掉了多少钱?存进了多少钱?

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

夯实基础

(1)序号为几的零件最接近标准?

④-(-) 0.025.

第2课时 加法运算律

教学目标:

1.能运用加法运算律简化加法运算。

2.理解加法运算律在加法运算中的作用,适当进行推理训练。

教学重点:如何运用加法运算律简化运算。

教学难点:灵活运用加法运算律。

教与学互动设计:

(一)情境创设,导入新课

思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题。

(二)合作交流,解读探究

计算:20+(-30)与(-30)+20两次得到的和相同吗?

得出结论:20+(-30)=(-30)+20

换几组数去试:得到加法交换律:a+b= (学生填).

其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的`哪种运算律?(结合律)

计算:(1)[8+(-5)]+(-4);

(2)8+[(-5)+(-4)].

得出结论:加法结合律:(a+b)+c= .

【例1】计算:

16+(-25)+24+(-35)

【例2】课本P20例3

说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律。

总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加。

(三)应用迁移,巩固提高

【例3】 利用有理数的加法运算律计算,使运算简便。

(1)(+9)+(-7)+(+10)+(-3)+(-9)

(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)

【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

(四)总结反思,拓展升华

本节课我们探索了有理数的加法交换律和结合律。灵活运用加法的运算律会使运算简便。一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便。

(五)课堂跟踪反馈

夯实基础

1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )

A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

2.计算:(-2)+4+(-6)+8+…+(-98)+100.

提升能力

3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元。如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?

4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负。某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.

(1)问收工时距A地多远?

(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?

第3课时 有理数的减法

教学目标:

1.经历探索有理数减法法则的过程,理解有理数减法法则。

2.会熟练进行有理数减法运算。

教学重点:有理数减法法则和运算。

教学难点:有理数减法法则的推导。

教与学互动设计

(一)创设情景,导入新课

观察温度计:

你能从温度计看出4℃比-3℃高出多少度吗?

学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答。

(二)动手实践,发现新知

观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

结论:减去-3等于加上-3的相反数+3.

(三)类比探究,总结提高

如果将4换成-1,还有类似于上述的结论吗?

先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算。

计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,

又因为(-1)+(+3)=2 ②,

由①②有(-1)-(-3)=-1+(+3) ③,

即上述结论依然成立。

试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论。

再试:把减数-3换成正数,结果又如何呢?

计算9-8与9+(-8);15-7与15+(-7)

从中又能有新发现吗?

让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数。

归纳:由上述实验可发现,有理数的减法可以转化为加法来进行。

减法法则:减去一个数,等于加上这个数的相反数。

用字母表示:a-b=a+(-b).

(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

(四)例题分析,运用法则

【例】计算:

(1)(-3)-(-5); (2)0-7;

(3)7.2-(-4.8);(4)-3-5.

(五)总结巩固,初步应用

总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识。

人教版七年级数学上册教案 篇六

一、教学目标

1、知识与技能:

(1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。

(2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。

2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。

3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。

4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。

二、教学重点、难点关键

1、教学重点:角的概念、表示方法及角度制的换算

2、教学难点:角的表示方法、角度制的换算

3、关键:学会观察图形是正确表示一个角的关键

三、学情分析

角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法

四、教学准备

为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。

五、教学用具:

量角器

六、教学过程

(一)引入新课

1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。

2提出问题:

时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。

学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。

(二)活动探究,建构新知

活动一

角的概念

师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:

a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;

b、角也可以看成由一条射线绕着它的端点旋转而成的图形。

(学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)

活动二

角的表示

师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)

生:角的表示方法有:

1、角的符号+三个大写字母,如:∠aob

2、角的符号+一个大写字母,如:∠o

(顶点处只有一个角时)

3、角的符号+数字如:∠1

4、角的符号+希腊字母如∠α

师:在用这些方法表示角的时候应该注意些什么呢?

生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。

师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。

(在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)

尝试应用,反馈矫正

师:请同学们完成下面的练习

1、图中共有多少个角?请分别表示出来。

c

2、将图中的角用不同方法表示出来并填写下表

b

b

∠1

∠bca∠3∠4abc

ceda

获得积极深层次的体验,从而促进学生探究能力的发展)

活动三

角的度量与比较

ab

师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c

1、先估测图中所示各个角的大小

2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好

4、对于角的比较大小,你还能有什么好的方法吗?

生:1、∠b最大

2、∠a=28°∠b=91°∠c=45°

量角器的使用方法:“一对中,二合线,三读数”

1、点b射门最好。

2、对于角的比较大小,也可以通过叠合的方法来比较。

(通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)

(三)、巩固练习,迁移新知

试一试1、如图打台球的时候,球的反射角总是等于入射角。

请同学们估测球反弹后会撞击图中的哪一点?

(问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)

2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;

(2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写

出哪些有关的角的和与差的关系式?o

dac

b

(问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)

3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。

(问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:

(1)度、分、秒是常用的角的度量单位;

(2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习

(四)、归纳总结,系统知识

师:本节课学习了哪些知识?

生:学习了角的概念、角的表示、角的比较与度量,角的换算。

师:通过本节课的实践、探索、交流与讨论,你有哪些收获?

生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等

(五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。

人教版七年级数学上册教案 篇七

教学目标

1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、

2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、

重点

掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、

难点

识别单项式的系数和次数、

教学过程

一、创设情境,导入新课

师:出示图片、

青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:

(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?

(2)t小时呢?

二、推进新课

(一)用含字母的式子表示数量关系、

师:出示第54页例1、

生:解答例1后,讨论问题,用字母表示数有什么意义?

学生经过讨论得出一定的答案,但可能不会太规范,教师总结、

师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)、

师生共同完成例2,进一步体会用字母表示数的意义、

巩固练习:第56页练习、

(二)单项式的概念、

师:出示问题、

引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?

生:通过观察、对比、讨论得出,各式都是数或字母的积、

师:指出单项式的概念,特别地,单独的一个数或字母也是单项式、

巩固练习:下列各式是单项式的式子是____________、

《整式的加减》同步练习

1、代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为?

2、甲、乙二人一起加工零件、甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时、甲、乙二人共加工零件___个。

《整式的加减》单元测试卷含答案

9、已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()

A、ab B、a+b C、10a+b D、100a+b

【考点】列代数式、

【分析】a放在左边,则a在百位上,据此即可表示出这个三位数、

【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b、

故选D、

【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字、

10、原产量n吨,增产30%之后的产量应为()

A、(1﹣30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨

【考点】列代数式、

【专题】应用题、

【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可、

【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨、

故选B、

【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系、

人教版七年级数学上册教案 篇八

教学目标

1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质。

重点、难点

重点:探索并理解平移的性质。

难点:对平移的认识和性质的探索。

教学过程

一、引入新课

1.教师打开幻灯机,投放课本图5.4-1的图案。

2.学生观察这些图案、思考并回答问题。

(1)它们有什么共同的特点?

(2)能否根据其中的一部分绘制出整个图案?

3.师生交流。

(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案。

《5.4平移》同步讲义练习和同步练习

1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为   .

2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为   cm2.

3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”。如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”。若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是   .

《5.4平移》同步测试卷含答案

1. 将图形平移,下列结论错误的是( )

A.对应线段相等

B.对应角相等

C.对应点所连的线段互相平分

D.对应点所连的线段相等

解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.

12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

A.轴对称 B.平移 C.旋转 D.平移和旋转

解析: 国旗上的四个小五角星通过平移和旋转可以相互得到。故选D.

人教版七年级数学上册教案 篇九

教学目标和要求:

1.理解单项式及单项式系数、次数的概念.

2.会准确迅速地确定一个单项式的系数和次数.

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.

教学过程:

一、复习引入:

1、列代数式

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

2、请学生说出所列代数式的意义.

3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

由小组讨论后,经小组推荐人员回答,教师适当点拨.

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,

如a,5.

2.练习:判断下列各代数式哪些是单项式?

(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以

四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

单项式的系数:单项式中的数字因数叫做这个单项式的系数.

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4.例题:

例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-,次数是3.

例2:下面各题的判断是否正确?

①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;

④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.

答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确

强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关.

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

三、课堂小结:

①单项式及单项式的系数、次数.

②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.

教学后记:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

七年级数学上册教案 篇十

一、教学目标: (一)教学知识点

1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。

2 .近似数和有效数字 并按要求取近似数。

3.从统计图中获取信息 并用统计图形象地表示数据。

(二)能力训练要求

1.体会描述较小 数据的方法 进一步发展数感。

2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。

3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。

(三)情感与价值观要求:

1.培养学生用数学的意识和信心 体会数学的应用价值。

2.发展学生的创新能力和克服困难的勇气。

二、教学重点:

1.感受较小的数据。

2.用科学记数法表示较小的数。

3.近似数和有效数字 并能按要求取近似数。

4.读懂统计图 并能形象、有效地用统计图描述数据。

教学难点:形象、有效地用统计图描述数据。

教学过程:.创设情景 引入新

三、讲授新:

请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

1.哪些数据用科学记数法表示比较方便?举例说明。

2.用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米。

(2)生物学家发现一种病毒的长度约为0.000043毫米;

(3)某种鲸的体重可达136 000 000千克;

(4)2003年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚。

四、时小结:

我们这节回顾了以下知识:

1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。

2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。

3.又一次欣赏了形象的统计图 并从中获取有用的信息。

(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。

(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?

制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可。

(1)形象统计图(略)只要合理即可。

(2)从表中的数据看出 河流越长 其流域面积越大。

(3)河流的年径流量与河流所处的位置有关系。

人教版七年级数学上册教案 第十一篇

学习目标:

1.了解算术平方根的概念,会用根号表示数的算术平方根;

2. 会用平方运算求某些非负数的算术平方根;

3.能运用算术平方根解决一些简单的实际问题。

学习重点:

会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题。

学习难点:

区别平方根与算术平方根

掌握本章基本概念与运算,能用本章知识解决实际问题。

【知识与技能】

【过程与方法】

通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。

【情感态度】

领悟分类讨论思想,学会类比学习的方法。

【教学重点】

本章知识梳理及掌握基本知识点。

【教学难点】

应用本章知识解决实际与综合问题。

一、知识框图,整体把握

【教学说明】

1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法。

2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。

二、释疑解惑,加深理解

1.利用平方根的概念解题

在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。

例1已知某数的平方根是a+3及2a-12,求这个数。

分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.

解得a=3.

∴a+3=6,2a-12=-6.

∴这个数是36.

【教学说明】

负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。

2.比较实数的大小

除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。

人教版七年级数学上册教案 第十二篇

学习目标

1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

学法指导

从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

《2.1.3多项式》同步四维训练含答案

新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度。

《2.1.2多项式》课时练习含答案

1.下列说法中正确的是( )

A.多项式ax2+bx+c是二次多项式

B.四次多项式是指多项式中各项均为四次单项式

C.-ab2,-x都是单项式,也都是整式

D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

2.如果一个多项式是五次多项式,那么它任何一项的次数( )

A.都小于5 B.都等于5

C.都不小于5 D.都不大于5

3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

A.a10+b19 B.a10-b19

C.a10-b17 D.a10-b21

4.若xn-2+x3+1是五次多项式,则n的值是( )

A.3 B.5 C.7 D.0

5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有。(填序号)

6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为。

7.多项式的二次项系数是。

8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项。”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式。”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的。理由吗?

9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值。

10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

(1)请把游戏最后丁所报出的答案用整式的形式描述出来;

(2)若甲取的数为19,则丁报出的答案是多少?

人教版七年级数学上册教案 第十三篇

单元教学内容

1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念

2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系

(2)数轴能反映数的性质、

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数

(4)数轴可使有理数大小的比较形象化

3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分

4、正确理解绝对值的概念是难点

根据有理数的。绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

(1)任何有理数都有唯一的绝对值

(2)有理数的绝对值是一个非负数,即最小的绝对值是零

(3)两个互为相反数的绝对值相等,即│a│=│-a│

(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a

(5)若│a│=│b│,则a=b,或a=-b或a=b=0

三维目标

1、知识与技能

(1)了解正数、负数的实际意义,会判断一个数是正数还是负数

(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解

(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值

(4)会利用数轴和绝对值比较有理数的大小

2、过程与方法

经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法

3、情感态度与价值观

使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言

重、难点与关键

1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值

2、难点:准确理解负数、绝对值等概念

3、关键:正确理解负数的意义和绝对值的意义

课时划分

1、1 正数和负数 2课时

1、2 有理数 5课时

1、3 有理数的加减法 4课时

1、4 有理数的乘除法 5课时

1、5 有理数的乘方 4课时

第一章有理数(复习) 2课时

1、1正数和负数

第一课时

三维目标

一、知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量

二、过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性

三、情感态度与价值观

培养学生积极思考,合作交流的意识和能力

教学重、难点与关键

1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2、难点:正确理解负数的概念。

3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪、

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、

五、讲授新课

(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量。

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量

六、巩固练

课本第3页,练习1、2、3、4题

熟读唐诗三百首,不会做诗也会吟。上面的13篇七年级数学上册教案是由快回答精心整理的人教版七年级数学上册教案范文范本,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。