1. 主页 > 知识大全 >

初三数学教学设计【优秀12篇】

作为一名教职工,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。写教学设计需要注意哪些格式呢?这里给大家分享一些关于初三数学教学设计,方便大家学习。为了加深您对于初三数学教案的写作认知,下面快回答给大家整理了12篇初三数学教学设计,欢迎您的阅读与参考。

初三数学教案 篇一

一、教学目标:

1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

二、教学重点:

了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。

教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。

三、教学方法:

观察法。

四、教学过程:

复习:

1、什么是等腰三角形?

2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质?

新课讲解:

在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

同学们和我一起来回忆上学期学过的公理

本套教材选用如下命题作为公理:

1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

2.两条平行线被第三条直线所截,同位角相等;

3.两边夹角对应相等的两个三角形全等;(SAS)

4.两角及其夹边对应相等的两个三角形全等;(ASA)

5.三边对应相等的两个三角形全等;(SSS)

6.全等三角形的对应边相等,对应角相等。

由公理5、3、4、6可容易证明下面的推论:

推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:

已知:∠A=∠D,∠B=∠E,BC=EF

求证:△ABC≌△DEF

证明:∵∠A+∠B+∠C=180°,

∠D+∠E+∠F=180°

(三角形内角和等于180°)

∴∠C=180°-(∠A+∠B)

∠F=180°-(∠D+∠E)

又∵∠A=∠D,∠B=∠E(已知)

∴∠C=∠F

又∵BC=EF(已知)

∴△ABC≌△DEF(ASA)

定理:等腰三角形的两个底角相等。

这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。

初三数学教案 篇二

一、教学目标

1、知识与技能

(1)理解圆与圆的位置的种类;

(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;

(3)会用连心线长判断两圆的位置关系。

2、过程与方法

设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:

(1)当时,圆与圆相离;

(2)当时,圆与圆外切;

(3)当时,圆与圆相交;

(4)当时,圆与圆内切;

(5)当时,圆与圆内含;

3、情态与价值观

让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想。

二、教学重点、难点:

重点与难点:用坐标法判断圆与圆的位置关系。

问题 设计意图 师生活动

1.初中学过的平面几何中,圆与圆的位置关系有几类? 结合学生已有知识以验,启发学生思考,激发学生学习兴趣。 教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流。

2.判断两圆的位置关系,你有什么好的方法吗?

引导学生明确两圆的位置关系,并发现判断和解决两圆的位置 教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法。

初三数学教案 篇三

教学内容:

义务教育课程标准实验教科书(人教版)三年级上册第三者112页例1简单的组合。

教学目标:

1、通过观察、猜测、操作等活动,找出最简单的事物的组合数。

2、经历探索简单事物组合规律的过程。

3、培养学生有顺序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,激发学生学好数学的信心。

教学重点:

经历探索简单事物组合规律的过程。

教学难点:

能用不同的方法准确地计算出组合数。

教具准备:

教学课件学具准备:每生准备主题图中相关的学具卡片或实物。

教学过程:

(一)创设问题情境:

师:小朋友,你们喜欢老师漂亮一点呢还是喜欢老师丑一点?

生:大多数的小朋友说喜欢老师漂亮。

师:那你们帮助老师打扮打扮。我最喜欢红色体恤和这三件下衣,到底怎样搭配最漂亮呢?请小朋友们给老师出出主意。小朋友们纷纷发表自己的意见,并说出了自己的理由。

师:谢谢。你们的建议都不错。那我这一件上衣、三件下衣能有多少种不同的穿法呢?

老师接着问:那我有两件上衣、三件下衣又有多少种不同的穿法呢?有说4种、有说5种、也有说6种的,到底有几种呢?

(二)

1.自主合作探索新知试一试

师:请同学们也试着想一想,如果你觉得直接想象有困难的话可以借助手中的学具卡片摆一摆。学生活动教师巡视。

2.发现问题学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复了,有的漏写了。

3.小组讨论师:每个同学算出的个数不同,怎样才能很快算出两件上衣、三件下衣有多少种不同的穿法呢?并做到不重复不遗漏呢?学生以小组为单位交流讨论。

4.小组汇报汇报时可能会出现下面几种情况:

(1)、无序的。用学具卡片或实物摆,然后再数。

(2)、用连线的方法算出。

(3)、用图式的方法算出。引导学生及时评价每一种方法的优缺点,使其把适合自己的方法掌握起来。

5.小结教师简单小结学生所想方法引出练习内容见课本112页。

(三)拓展应用

数字2、3、4、5、6、7写出不同的两位数?写完交流。(或者也可用这样一道题:用△○□能摆成6种排法,例如:□○△请你试着摆出其他几种排法。

教学反思:

初三数学教案 篇四

一、教学目标

1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。

2.掌握“两角对应相等,两个三角形相似”的判定方法。

3.能够运用三角形相似的条件解决简单的问题。

二、重点、难点

1.重点:三角形相似的判定方法3--“两角对应相等,两个三角形相似”

2.难点:三角形相似的判定方法3的运用。

3.难点的突破方法

(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法。

(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据。

(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似。

三、例题的意图

本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程。并让学生掌握遇到等积式,应先将其化为比例式的方法。

例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础。

四、课堂引入

1.复习提问:

(1)我们已学习过哪些判定三角形相似的方法?

(2)如图,△ABC中,点D在AB上,如果AC2=AD?AB,

初三数学教学设计 篇五

教学目标:

1、进一步掌握推理证明的方法,发展演绎推理能力。

2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。

3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。

教学过程:

引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。

定理:直角三角形两条直角边的平方和等于斜边的平方。

如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,

延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。

∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。

∴四边形ACDE是直角梯形。

∴S梯形ACDE=(a+b)(a-b)=(a+b)2

∴∠ABE=180°-∠ABC-∠EBD=180°-90°=90°

AB=BE

∴S△ABC=c2

∵S梯形ACDE=S△ABE+S△ABC+S△BED,

∴(a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+ab

∴a2+b2=c2

反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?

已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。

证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则

A’B’2+A’C’2=B’C’2(勾股定理)

∵AB2+AC2=BC2,A’B’=AB,A’C’=AC,

∴BC2=B’C’2

∴BC=B’C’

∴△ABC≌△A’B’C’(SSS)

∴∠A=∠A’=90°(全等三角形的对应角相等)

因此,△ABC是直角三角形。

定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。

一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。

初三数学教案 篇六

一、概念: 三、例1---------- 四、特殊角的正余弦值

------------- ------------------- -----------------------

二、范围: ------------------ 五、例2 ------------

正弦和余弦(三)

一、素质教育目标

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.

(三)德育渗透点

培养学生独立思考、勇于创新的精神.

二、教学重点、难点

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.

三、教学步骤

(一)明确目标

1.复习提问

(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.

2.导入新课

根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.

(二)、整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.

(三)重点、难点的学习和目标完成过程

1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.

2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.

3.教师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦.

(2)把sin(90°-A)写成∠A的余弦.

这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:

(2)已知sin35°=0.5736,则cos______=0.5736.

(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.

为了配合例3的教学,教材中配备了练习题2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.

教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.

(四)小结与扩展

1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.

2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值(www.kuaihuida.com),任意一个锐角的余弦值等于它的余角的正弦值.

四、布置作业

教材习题14.1A组4、5.

五、板书设计

关于初三数学教案 篇七

一、背景知识

《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

二、教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

初三数学教案 篇八

教学过程设计

一、创设情境 引入课题

活动1

问题:

你们还记得一次函数图象与性质吗?

设计意图

通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

师生形为:

教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。

二、类比联想 探究交流

活动2

问题:

例2 画出反比例函数y= 与y=- 的图象。

(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)

设计意图:

通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

师生形为:

学生可以先自己动手画图,相互观摩。

在此活动中,教师应重点关注:

1学生能否顺利进行三种表示方法的相互转换:

2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;

3在动手作图的过程中,能否勤于动手,乐于探索。

比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?

(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)

设计意图:

学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

师生形为:

学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

教师参与到学生的讨论中去,积极引导。

(三)探索比较 发现规律

活动3

问题:

观察反比例函数y= 与y=- 的图象。

你能发现它们的共同特征以及不同点吗?

每个函数的图象分别位于哪几个象限?

在每一个象限内,y随x的变化如何变化?

由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:

形状: 反比例函数的图象是由两支双曲线组成的。因此称反比例函数的图象为双曲线;

位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;

任意一组变量的乘积是一个定值,即xy=k.

(注意:双曲线的两个分支都不会与x轴,y轴相交。)

学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的'过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育。

四、 运用新知 拓展训练

设计意图:

拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的。

师生形为:

学生独立思考完成。

教师巡视,引导学困生完成任务。

五、归纳总结 布置作业

问题:

本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?

初三数学教案 篇九

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

五、板书设计

第十四章 解直角三角形

一、锐角三角函数 证明:------------------

结论:--------------------

练习:---------------------

正弦和余弦(二)

一、素质教育目标

(一)知识教学点

使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

(二)能力训练点

逐步培养学生观察、比较、分析、概括的思维能力.

(三)德育渗透点

渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、教学重点、难点

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.

三、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.

(二)整体感知

只要知道三角形任一边长,其他两边就可知.

而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)重点、难点的学习与目标完成过程

正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.

若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则

引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.

例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

学生练习1中1、2、3.

让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

例2 求下列各式的值:

为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1)sin45°+cos45; (2)sin30°cos60°;

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即

0<sinA<1, 0<cosA<1(∠A为锐角).

还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”

四、布置作业

教材习题14.1中A组3.

预习下一课内容.

五、板书设计

初三数学教学设计 篇十

教学目标:

知识目标1.经历探索圆的中心对称性和旋转不变性的过程;.

2.理解圆心角的概念,并掌握圆心角定理。

3.理解“弧的度数等于它所对的圆心角的度数”这一性质。

能力目标体验利用旋转变换来研究圆的性质的思想方法,进一步培养学生观察、猜想、证明及应用新知解决问题的能力。

情感目标用生活的实例激发学生学习数学的浓厚兴趣,体验数学与生活的密切联系,坚定学好数学的信心,进一步培养学生尊重知识、尊重科学,热爱生活的积极心态。

教学重点:圆心角定理

教学难点:根据圆的旋转不变性推导出圆心角定理

教学过程:

一、设疑引新

你可曾想过:水杯的盖子为什么做成圆形?利用了圆的什么性质?

前面我们已经探究了圆的轴对称性,利用这一性质我们得到了垂径定理及逆定理,它帮助解决了圆的许多问题,那么圆还有哪些性质呢?

二、探究新知

1、圆绕圆心旋转180°后,仍与原来的圆重合——圆是中心对称图形,圆心是对称中心。

2、圆绕圆心旋转任意一个角度后,仍与原来的圆重合——圆的旋转不变性。集体备课3.1《圆心角》解决课前疑问。

3、顶点在圆心的角叫圆心角。如图,集体备课3.1《圆心角》就是一个圆心角。判别下列各图中的角是不是圆心角,并说明理由。

4、探究圆心角定理:

集体备课3.1《圆心角》(1)实验操作:设集体备课3.1《圆心角》,把∠COD连同集体备课3.1《圆心角》、弦CD绕圆心O旋转,使OA与OC重合,结果发现OB与OD重合,弦AB与弦CD重合,集体备课3.1《圆心角》和集体备课3.1《圆心角》重合。

(2)让学生猜想结论,并证明。

(3)同圆变等圆,结论成立。

5、圆心角定理:

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等(补充)。

几何表述:∵∠AOB=∠COD∴集体备课3.1《圆心角》=集体备课3.1《圆心角》,AB=CD,OE=OF

分析定理:。去掉“在同圆或等圆中”定理还成立吗?

反例:两个同心圆,显然弦AB与弦CD不相等,集体备课3.1《圆心角》与集体备课3.1《圆心角》不相等。

集体备课3.1《圆心角》提醒学生注意:定理的成立必须有大前提“在同圆或等圆中”。

6、应用新知:

例已知:如图,∠1=∠2.求证:集体备课3.1《圆心角》

【变式】已知:如图,∠1=∠2.

求证:AC=BD.,∠OBC=35°,

求弧AB的度数和弧BC的度数。

9、拓展提高:

集体备课3.1《圆心角》三、课堂小结

通过本节课的学习,你对圆有哪些新的认识?

1.圆是中心对称图形,圆具有旋转不变性。

2.、圆心角定理:

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等

3、弧的度数:

1?的圆心角所对的弧叫做1?的弧。

弧的度数等于它所对的圆心角的度数。

四、作业布置

作业本3.3.1节

7、再探新知:你能将⊙O二等分吗?

用直尺和圆规你能把⊙O四等分吗?

你能将任意一个圆六等分吗?

若按刚才这种方法把一个圆分成360份,则每一份的'圆心角的度数是1?,因为相等的圆心角所对的弧相等,所以每一份的圆心角所对的弧也相等。

我们把1?的圆心角所对的弧叫做1?的弧。弧的度数等于它所对的圆心角的度数。

集体备课3.1《圆心角》写法:若∠COD=80°,则CD的度数是80°

注:不可写成集体备课3.1《圆心角》=∠COD=80°,但可写成集体备课3.1《圆心角》=m∠COD=80°

8、巩固新知:如图:已知在⊙O中,∠AOB=45°

关于初三数学教案 第十一篇

教学目标

1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;

2、培养学生从形象思维向抽象思维的过渡;

3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。

重点、难点

1、重点:对圆点的轨迹的认识。

2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。

教学活动设计(在老师与学生的交流对话中完成教学目标 )

(一)创设学习情境

1、对“圆”的形成观察——理解——引出轨迹的概念

(使学生在老师的引导下从感性知识到理性知识)

观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)

理解:圆上的点具有两个性质:

(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

(2)到定点距离等于定长的的点都在圆上;(结合下图)

引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹。这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上。(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)

上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合。因此“到定点距离等于定长的点的轨迹”是圆。

轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)

(二)类比、研究1

(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)

轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;

轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;

(三)巩固概念

练习:画图说明满足下列条件的点的轨迹:

(1)到定点A的距离等于3cm的点的轨迹;

(2)到∠AOC的两边距离相等的点的轨迹;

(3)经过已知点A、B的圆O,圆心O的轨迹。

(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)

(四)类比、研究2

(这是第二次“类比”,目的:使学生的知识和能力螺旋上升。这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)

轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。

(五)巩固训练

练习题1:画图说明满足下面条件的点的轨迹:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹。

(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)

练习题2:判断题

1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线。( )

2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆。( )

3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线。( )

4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线。( )

(这组练习题的目的,训练学生思维的准确性和语言表达的正确性。题目由学生自主完成、交流、反思)

(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)

(六)理解、小结

(1)轨迹的定义两层意思;

(2)常见的五种轨迹。

(七)作业

教材P82习题2、6.

探究活动

关于初三数学教案 第十二篇

一、教学目标

1.了解推理、证明的格式,理解判定定理的证法。

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导

1.教师教法:启发式引导发现法。

2.学生学法:积极参与、主动发现、发展思维。

三、重点•难点及解决办法

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进行推理。

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点。

2.通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片。

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课。

2.通过教师指导,学生探索新知,练习巩固,完成新授。

3.通过学生自己总结完成小结。

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

阅读是学习,摘抄是整理,写作时创造。以上12篇初三数学教学设计就是快回答小编为您分享的初三数学教案的范文模板,感谢您的查阅。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。