1. 主页 > 知识大全 >

初中数学优秀教案【最新13篇】(初中数学教资面试备课教案模板)

作为一名辛苦耕耘的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?为了帮助大家更好的写作初中数学优秀教案,快回答整理分享了13篇初中数学优秀教案。

初中数学优秀教案 篇一

教学目标:

1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。

2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。

教学重点、难点:

正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。

教学过程:

一、平面内两直线位置关系

1、操作:

请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?

2、分类:根据学生想象,出示下图(网格):

师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的分类依据。

3、讨论交流,揭示平面内两条直线的位置关系。

小结:

两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?

板书:

相交

两条直线的位置关系

不相交

二、探究一:垂直

1、平面内两直线相交构成的4个角的特点。

师:首先来研究平面内两条直线“相交”这一情况。

师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?

2、平面内两直线相交的特殊情况。

提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?

(旋转至垂直)

师:现在两条直线相交成直角了。继续旋转呢?

除了相交成直角以外,其余的情况,都是任意相交的。

板书: 任意相交

相交

平面内两条直线的位置关系 相交成直角

不相交

3、练习:

下列图形中哪两条直线相交成直角。

○1 ○2 ○3

4、揭示概念。(媒体出示)

板书: 任意相交

相交

平面内两条直线的位置关系 相交成直角 垂直

不相交

5、平面图形中的垂直现象。

下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。

○1 ○2 ○3

记作: 记作: 记作:

6、动手操作。

三、探究二:平行

1、提问:长方形中,如果把相对的两条边无限延长,是否会在某一点相交?

2、揭示概念

板书: 任意相交

相交

平面内两条直线的位置关系 相交成直角 垂直

不相交 平行

3、平面图中的平行现象

4、练习

(1)说说下列哪些直线互相垂直?哪些互相平行?

将图2改为:

提问:e和f还平行吗?

将图2改为:

当角1等于角2时,e和f还平行吗?

(2)渗透“同一”平面观念

长方体中,这两条棱相交吗?那么他们平行吗?

板书: 任意相交

相交

同一平面内两条直线的位置关系 相交成直角 垂直

不相交 平行

四、生活中的平行与垂直

1、举例:生活中,你有没有发现“垂直与平行”的现象?

2、提问:为什么这些地方要设计成“垂直”或者“平行”?

五、课堂总结

初中数学优秀教案 篇二

一、教材分析

(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。

(二)课时安排:

两课时。本节课是第一课时,第二课时是梯形的判定及应用

(三)教学目标

1、知识与技能目标:

掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。

2、过程与方法目标:

⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;

⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、

3、情感、态度与价值观目标:

让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;

(四)教学重点、难点:

本节课的教学重点分成三个层次:

1、掌握梯形的定义,认识梯形的其他相关概念;

2、熟练应用等腰梯形的性质;

3、通过实际操作研究梯形的基本辅助线作法。

本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。

为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:

二、教学方法:

根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。

三、学习方法:

初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”

四、教具、学具准备:

多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸

五、教学程序:

共有六步

(一)情境引发

(二)活动探索、研究发现

(三)深化建构

(四)迁移运用

(五)系统概括

(六)布置作业,拓展思维

这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。

在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”

在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。

由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。

设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点

在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:

1、平行四边形和梯形的区别和联系;

2、我看等腰梯形的特殊性;

3、解决梯形的常用方法。

以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。

在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的

1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:

(1)等腰梯形

(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)

2、发挥想象,以梯形为基础图案设计通钢三中第__届运动会的会徽

我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、

六、有四点说明:

1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。

2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。

3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。

七、教学预测:

本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。

初中数学优秀教案 篇三

知识点:

因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:

理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:

考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

教学过程:

因式分解知识点

多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

(1)提公因式法

如多项式

其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用

写出结果。

(3)十字相乘法

对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么

2、教学实例:学案示例

3、课堂练习:学案作业

4、课堂:

5、板书:

6、课堂作业:学案作业

7、教学反思:

初中数学优秀教案 篇四

教学目标:

知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。

过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。

情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。

教学重点:用计算器进行数的加、减、乘、除、乘方的运算。

教学难点:能用计算器进行数的乘方的运算。

教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难 点。

教学方法:师生互动法。

课时安排:1课时。

教具:Powerpoint幻灯片、科学计算器。

环节 教 师 活 动 学 生 活 动 设 计 意 图

创设情境 一、从问题情境入手,揭示课题。

(出示幻灯一)

在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗

教师对学生的回答给予点评,并带着问题引入本节课题:

板书:3.4 用计算器进行数的计算 在教师的引导下,学生仔细观察、思考,积极回答。 通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的 求知欲。

探究活动一 一、 介绍计算器的使用方法。

(出示幻灯二)

B型计算器的面板示意图如下:

教师结合示意图介绍按键的使用方法。

学生根据教师的介绍,使用计算器进行实际操作。 通过训练,使学生掌握计算器 的按键操作,熟悉计算器的程序设计模式。

探究活动二 二、用计算器进行加、减、乘、除、乘方运算

(出示幻灯三)

例1 用计算器求下列各式的值

(1)(-3.75)+(-22.5)

(2)51.7(-7.2)

解:(1)

(-3.75)+(-22.5)=-26.25

学生相互交流,并用计算器进行实际操作。 通过计算,使学生熟悉计算器的用法。

探究活动二 (2)

51.7(-7.2)=-372.24

学生相互交流,并用计算器进行实际操作。

通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。

探究活动二 例2 用计算器计算(精确到0.001)

(-0.45)5

(-0.45)5-0.018

相互讨论,并进行实际操作。 通过计算,使学生会用计算器进行有理数的乘方运算。

探究活动二

例3 用计算器求值

(1)(-6)2(2)-62

解:

思考:

注意观察它们的按键顺序有什么不同?

学生认真观察、讨论,得出结论。

通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。

探究活动三 三、随堂练习

(出示幻灯四)

用计算器求值

1.9.23+10.2

2 . (-2.35)(-0.46)

3.( -3.45)3

4.-2.082

学生独立操作完成。 通过训练,使学生能熟练地用计算器进行数的运算。

探究活动四 四、实际应用,能力提高。

1.用计算器解决“创设情境”中提出的问题。

(出示幻灯五)

2.张老师在银行贷月息为0.456%的住房 贷款50 000元,满5年时共需付款50 000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元? 在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。 通过实际应用,进一步提高学生运用计算器解决实际问题的能力。

学习总结 五、学习总结

这节课你有哪些收获?有什么体会?

教师简要点评:

(1)由于受计算器显示数位的限制,计算结果是一个近似数。

(2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的。形式来显示。

学生相互交流自己的 收获和体会,教师参与互动并给予鼓励 性的评价。 学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

课堂反馈

1.用计算器进行计算(略)

2.(1)用计算器计算下列各式:

1111,111111,1 1111 111,11 11111 111 。

(2)根据 (1)的计算结果,你发现了什么规律?

(3)如果不用计算器,你能直接写出1 111 1111 111 1 11的结果吗? 让学生熟练运用计算器进行操作,学以致用。 及时反馈,并使学生能运用计算器探究一些有趣的数学规律。

附:板书设计:

3.4用计算器进行数的计算

1.介绍计算器的使用方法;

2.运用计算器进行数的运算;

3.运用计算器探究数学规律。

教学反思:

1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。

2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。

3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的 依赖于学习者的主观能动性,教学成本也大幅度提高。

初中数学优秀教案 篇五

【教学目标】:

通过实例,使学生体会用样本估计总体的思想,能够根据统计结果作出合理的判断 和推测,能与 同学进行交流,用清晰的语言表达自己的观点。

【重点难点】:

重点、难点:根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。

【教学过程】:

一、课前准备

问题:20xx年北京的空气质量情况如何?请用简单随机抽样方法选取该年的30天,记录并统计这30天北京的空气污染指数,求出这30天的平均空气污染指数,据此估计北京20xx年全年的平均空气 污染指数和空气质量状况。请同学们查询中国环境保护网。

二、新课

师生用随机抽样的方法选定如下表中的30天,通过上网得知北京在这30天的空气污染指数及质量级别,如下表所示:

这30个空气污染指数的平均数为107,据此估计该城市20xx年的平均空气污染指数为107, 空气质量状况属于轻微污染。

讨论:同学们之 间互相交流,算一算自己选取的样本的污染指数为多少?根据样本的空气污染指数的平均数,估计这个城市的空气质量 。

2、体会用样本估计总体的合理性

下面是老师抽取的样本的空气 质量级别、所占天数及比例的统计图和该城市20xx年全年的相应数据的统计图,同学们可以通过比较两张统计图,体会用样本估计总体的合理性。

经比较可以发现,虽然从样本获得的数据与总体的不完全一致,但这样的误差 还是可以接受的,是一个较好的估计。

练习:同学们根据自己所抽取的。样本绘制统计图,并 和20xx年全年的相应数据的统计图进行比较,想一想用你所抽取的样本估计总体是否合理?

显然,由于各位同学所抽取的样本的不同,样本的污染指数不同。但是,正如我们前面已经看到的,随着样本容量(样本中包含的个体的个数)的增加,由样本得出的平均数往往会更接近总体的平均数,数学家已经证明随机抽样方法是科学而可靠的 . 对于估计总体特性这类问 题,数学上的一般做法是给出具有一定可靠程度的一个估计值的范围,将来同学们会学习到有关的数学知识。

3、加权平均数的求法

问题1:在计算20个男同学平均身高时,小华先将所有数据按由小到大的顺序排列,如下表所示:

然后,他这样计算这20个学生的平均身高:

小华这样计算平均数可以吗?为什么?

问题2:假设你们年级共有四个班级,各班的男同学人数和平均身高如下表所示。

小强这样计算全年级男同学的平均身高:

小强这样计算平均数可以吗?为什么?

练习:在一个班的40学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,求这个班级学生的平均年 龄。

三、小结

用样本估计总体 时,样本容量越大,样本对总体的估计也就越精确。相应地,搜集、整理、计算数据的工作量也就越大,随机抽样是经过数学证明了的可靠的方法,它对于 估计总体特征是很有帮助的。

四、作业

习题4.2 1

初中数学优秀教案 篇六

●教学目标

(一)教学知识点

1.掌握极差、方差、标准差的概念。

2.明白极差、方差、标准差是反映一组数据稳定性大小的。

3.用计算器(或计算机)计算一 组数据的标准差与方差。

(二)能力训练要求

1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力。

2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力。

(三)情感与价值观要求

1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界。

2.通过小组活动,培养学生的合作意识和能力。

●教学重点

1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量。

2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .

●教学难点

理解方差、标准差的概念,会求一组数据的方差、标准差。

●教学方法

启发引导法

●教学过程

Ⅰ.创设现实问题情景,引入新课

[师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断。

当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分。某外贸公司要出口 一批规格为75 g的鸡腿。现有2个厂家提供货源。

[生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.

(2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得

甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

(3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).

(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小。

[师]很好。在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况。

从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小。

这节课我们就来学习关于数据的离散程度的几个量。

Ⅱ.讲授新课

[师]在上面几个问题中,你认为哪一个数值是反映数据的离散程度的一个量呢?

[生]我认为最大值与最小值的差是反映数据离 散程度的一个量。

[师]很正确。我们把一组数据中最大数据与 最小数据的差叫极差。而极差是刻画数据离散程度的一个统计量。

[生](1)丙厂这20只鸡腿质量的平均数:

丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

极差为:79-72=7(g)

[生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距。

甲厂20只鸡 腿的质量与相应的平均数的差距为:

(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

丙厂20只鸡腿的质量与相应的平均数的差距为:

(75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小。

数学上,数据的离散程度还可以用方差或标准差来刻画。

其中方差是各个数据与平均数之差的平方的平均数,即

s2= [(x1- )2+(x2- )2+…+(xn- )2]

其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根。

[生]为什么方差概念中要除以数据个数呢?

[师]是为了消除数据个数的印象。

由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

[生]极差还比较容易算出。而方差、标准差算起来就麻烦多了。

[师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差。

同学们可在自己的计算器上探 索计算标准差的具体操作

计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差。

[生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

因为s甲2<s丙2.

所以根据计算的结果,我认为甲厂的产品更符合要求。

Ⅲ.随堂练习

Ⅳ.课时小结

这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别。

Ⅴ.课后作业

Ⅵ.活动与探究

甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:

(1)请你填上表中乙学生的相关数据;

(2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平。

初中数学优秀教案 篇七

一、教材分析:

本节课主要是在学生学习了有理数概念基础上,从标有刻度温度计表示温度高低这一事例出发,引出数轴画法和用数轴上点表示数方法,初步向学生渗透数形结合数学思想,以使学生借助直观图形来理解有理数有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识重要工具,还是以后学好不等式解法、函数图象及其性质等内容必要基础知识。

二、教学目标:

根据新课标要求及七年级学生认知水平我特制定本节课教学目标如下:

1.使学生理解数轴三要素,会画数轴。

2.能将已知有理数在数轴上表示出来,能说出数轴上已知点所表示有理数,理解所有有理数都可以用数轴上点表示

3.向学生渗透数形结合数学思想,让学生知道数学于实践,培养学生对数学学习兴趣。

三、教学重难点确定:

正确理解数轴概念和有理数在数轴上表示方法是本节课教学重点,建立有理数与数轴上点对应关系(数与形结合)是本节课教学难点。

四、学情分析:

⑴知识掌握上,七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统去讲述。

⑵学生学习本节课知识障碍。学生对数轴概念和数轴三要素,学生不易理解,容易造成画图中掉三落四现象,所以教学中教师应予以简单明白、深入浅出分析。

⑶由于七年级学生理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动形象,引发学生兴趣,使他们注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习主动性。

⑷心理上,学生对数学课兴趣,老师应抓住这有利因素,引导学生认识到数学课科学性,学好数学有利于其他学科学习以及学科知识渗透性。

五、教学策略:

由于七年级学生理解能力和思维特征,他们往往需要依赖直观具体形象图形年龄特点,以及七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”研讨式学习方法。教学中积极利用板书和练习中图形,向学生提供更多活动机会和空间,使学生在动脑、动手、动口过程中获得充足体验和发展,从而培养学生数形结合思想。

为充分发挥学生主体性和教师主导辅助作用,教学过程中设计了七个教学环节:

(一)、温故知新,激发情趣

(二)、得出定义,揭示内涵

(三)、手脑并用,深入理解

(四)、启发诱导,初步运用

(五)、反馈矫正,注重参与

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

六、教学程序设计:

(一)、温故知新,激发情趣:

首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉带刻度度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上5°C用5表示。

(2)零下15°C用-15表示。

(3)0°C用0表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上点表示正数、负数和0呢?答案是肯定,从而引出课题:数轴。结合实例使学生以轻松愉快心情进入了本节课学习,也使学生体会到数学于实践,同时对新知识学习有了期待,为顺利完成教学任务作了思想上准备。

(二)、得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美感觉。)

(2)标正方向(这里说明我们在水平位置数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度长短,可根据实际情况而定,但同一单位长度所表示量要相同。)

由于画数轴是本节课教学重点,教师板书这三个步骤,给学生以示范。

画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师亲切语言启发学生,以培养师生间默契)

通过讨论由师生共同得到数轴定义:规定了原点、正方向和单位长度直线叫做数轴。

至此,我们将一个具体事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论认识过程。

(三)、手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

A、B、C三个图形从数轴三要素出发,D和F是学生可能出现错误,给学生足够观察、思考时间然后展开充分讨论,教师参与到学生讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时教师巡视并予以个别指导,关注学生个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生发展;并强调:原点、正方向和单位长度是数轴三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念理解;一个是通过动手操作加深对概念理解。

(四)、启发诱导,初步运用:

有了数轴以后,所有有理数都可以表示在数轴上,那么反过来,数轴上点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数学习埋下伏笔,这里不再展开。

安排课本23页例1,利用黑板上例题图形让学生来操作,教师提出要求:

1、要把点标在线上

2、要把数标在点上方

通过学生实际操作,可以加深对数轴理解,进一步掌握用数轴上点表示数方法,同时激发学生学习兴趣,调动学生积极性,从而使学生真正成为教学主体。

当然,此题还可以再说出几个有理数让学生去标点,好让更多学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上点表示,从而加深对数形结合思想理解。

(五)、反馈矫正,注重参与:

为巩固本节教学重点让学生独立完成:

1、课本23页练习1、2

2、课本23页3题(给全体学生以示范性让一个同学板书)为向学生进一步渗透数形结合思想让学生讨论:

3、数轴上点P与表示有理数3点A距离是2,

(1)试确定点P表示有理数;

(2)将A向右移动2个单位到B点,点B表示有理数是多少?

(3)再由B点向左移动9个单位到C点,则C点表示有理数是多少?

先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识基础上达到灵活运用,形成一定能力。

(六)、归纳小结,强化思想:

根据学生特点,师生共同小结:

1、为了巩固本节课教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同有理数?

让学生牢固掌握一个有理数只对应数轴上一个点,并能说出数轴上已知点所表示有理数。

(七)、布置作业,引导预习:

为面向全体学生,安排如下:

1、全体学生必做课本25页1、2、3

2、最后布置一个思考题:

与温度计类似,数轴上两个不同点所表示两个有理数大小关系如何?

(来引导学生养成预习学习习惯)

七、板书设计:(略)

总之,在教学过程中,我始终注意发挥学生主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样教学实践取得了良好教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎好教师。

以上是我对本节课设想,不足之处请老师们多多批评、指正,谢谢!

初中数学优秀教案 篇八

学习目标

1、了解分式的概念,会判断一个代数式是否是分式。

2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

3、能分析出一个简单分式有、无意义的条件。

4、会根据已知条件求分式的值。

学习重点

分式的概念,掌握分式有意义的条件

学习难点

分式有、无意义的条件

教学流程

预习导航

一、创设情境:

京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:

(1)货运列车从北京到上海需要多长时间?

(2)快速列车从北京到上海需要多长时间?

(3)已知从北京到上海快速列车比货运列车少用多少时间?

观察刚才你们所列的式子,它们有什么特点?

这些式子与分数有什么相同和不同之处?

合作探究

一、概念探究:

1、列出下列式子:

(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是

(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是 元。

(3)正n边形的每个内角为 度。

(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花 ______㎏。

2、两个数相除可以把它们的商表示成分数的形式。如果用字母 分别表示分数的分子和分母,那么 可以表示成什么形式呢?

3、思考:

上面所列各式有什么共同特点?

(通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)

分式的概念:

4、小结分式的概念中应注意的问题。

① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;

② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;

③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。

二、例题分析:

例1 : 试解释分式 所表示的实际意义

例2:求分式 的值 ①a=3 ②a=—

例3:当取什么值时,分式 (1)没有意义?(2)有意义?(3)值为零。

三、展示交流:

1、在 ____________中,是整式的有_____________________,是分式的有________________;

2、 写成分式为____________,且当m≠_____时分式有意义;

3、当x_______时,分式 无意义,当x______时,分式的值为1。

4、 若分式 的值为正数,则x的取值应是 ( )

A. , B. C. D. 为任意实数

四、提炼总结:

1、什么叫分式?

2、分式什么时候有意义?怎样求分式的值

初中数学优秀教案 篇九

一、背景知识

《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

二、教学目标

1、使学生能说出有理数大小的比较法则

2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

三、教学重点与难点

重点:运用法则借助数轴比较两个有理数的大小。

难点:利用绝对值概念比较两个负分数的大小。

四、教学准备

多媒体课件

五、教学设计

(一)交流对话,探究新知

1、说一说

(多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

(3)温度的高低与相应的数在数轴上的位置有什么?

(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

(二)应用新知,体验成功

1、练一练(师生共同完成例1后,学生完成随堂练习1)

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

分析:本题意有几层含义?应分几步?

要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

随堂练习: P19 T1

2、做一做

(1)在数轴上表示下列各对数,并比较它们的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出图中各对数的绝对值,并比较它们的大小。

(3)由①、②从中你发现了什么?

(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

(1)正数都大于零,负数都小于零,正数大于负数。

(2)两个正数比较大小,绝对值大的数大。

(3)两个负数比较大小,绝对值大的数反而小。

3、师生共同完成例2后,学生完成随堂练习2、3、4。

例2比较下列每对数的大小,并说明理由:(师生共同完成)

(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

思考:还有别的方法吗?(分组讨论,积极思考)

4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

练一练:P19 T2、3、4

5、考考你:请你回答下列问题:

(1)有没有的有理数,有没有最小的有理数,为什么?

(2)有没有绝对值最小的有理数?若有,请把它写出来?

(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

6、议一议,谈谈本节课你有哪些收获

(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

六、布置作业:P19 A组、B组

基础好的A、B两组都做

基础较差的同学选做A组。

初中数学优秀教案 篇十

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展。从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数。自然数为数学结构提供了坚实的基础。

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系。一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法。

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量。这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义。显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的。

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的。如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的。收入与支出是“意义相反”的两回事,是不能用同一个数来表达的。因此,为了准确表达支出5000元,就有必要引入了一种新数—负数。

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”。

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数。“-5”读作“负5”,“-5000”读作“负5000”。

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了。这样具有相反意义的两个数量就有了不同的表达方式。

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”。再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了。在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”。

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”。

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示。一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元。

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示。

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价。

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”。

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元。

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球。

初中数学优秀教案 第十一篇

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

初中数学优秀教案 第十二篇

教学目的知识技能 使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题。

数学思考提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想。

解决问题 通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题。

情感态度通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美。

教学难点审题,从文字语言中挖掘有价值的信息。

知识重点会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题。

教学过程 设计意图

教学过程

问题一:列方程解应用题的一般步骤?

师生共同回忆

列方程解应用题的步骤:

(1)审题;(2)设未知数;

(3)列方程;(4)求解;

(5)检验; (6)答。

问题二:矩形的周长和面积?长方体的体积?

问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽。

教师活动:引导学生读题,找到题目中的关键语句。

学生活动:在关键语句中找到反映相等关系的语句,探究解决办法。

教师活动:用多媒体演示分析,解题方法。

做一做

如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子。求剪去的小正方形的边长。

课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形。已知原长方形的面积是正方形面积的 ,求这个正方形的边长。

问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元。经市场调查发现:如果每件服装降价1元,平均每天能多售出2件。在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的。如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?

学生活动:在众多的文字中,找到关键语句,分析相等关系。

教师活动:用多媒体帮助学生分析试题。提示学生检验解的合理性。

课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双。物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?

2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25 %的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)

复习列方程解应用题的一般步骤。

本题为后面解决有关面积、体积方面问题做铺垫。

提高学生的审题能力。使学生会解决有关面积的问题。

解决体积问题的问题

培养学生用数学的意识以及渗透转化和方程的思想方法。

强调对方程的解进行双重检验。

小结与作业

课堂

小结 利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养。

本课

作业 课本第43页 习题2

课后随笔(课堂设计理念,实际教学效果及改进设想)

初中数学优秀教案 第十三篇

学习目标:

1、进一步理解平均数、中位数和众数等统计量的统计意义。

2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。

3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。

一、知识点回顾

1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。

2、样本1、2、3、0、1的平均数与中位数之和等于___.

3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是。

4、数据1,6,3,9,8的极差是

5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是。

二、专题练习

1、方程思想:

例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.

点拨:本题可以用统计学知识和方程组相结合来解决。

同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:

2、分类讨论法:

例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;

点拨:做题过程中要注意满足的条件。

同类题连接:数据-1 , 3 , 0 , x的极差是5 ,则x =_____.

3、平均数、中位数、众数在实际问题中的应用

例:某班50人右眼视力检查结果如下表所示:

视力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

人数2 2 2 3 3 4 5 6 7 11 5

求该班学生右眼视力的平均数、众数与中位数。发表一下自己的看法。

4、方差在实际问题中的应用

例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:

甲:5 8 8 9 10

乙:9 6 10 5 10

(1)分别计算每人的平均成绩;

(2)求出每组数据的方差;

(3)谁的射击成绩比较稳定?

三、知识点回顾

1、平均数:

练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?

2、中位数和众数

练习:1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是。

2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

A.24、25 B.23、24 C.25、25 D.23、25

3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:

得分50 60 70 80 90 100 110 120

人数2 3 6 14 15 5 4 1

分别求出这些学生成绩的众数、中位数和平均数。

3.极差和方差

练习:1.一组数据X 、X …X的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )

A. 8 B.16 C.9 D.17

2.如果样本方差,

那么这个样本的平均数为。样本容量为。

四、自主探究

1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2.

则:101、102、103、104、105、的平均数是,方差是。

2、4、6、8、10、的平均数是,方差是。

你会发现什么规律?

2、应用上面的规律填空:

若n个数据x1x2……xn的平均数为m,方差为w。

(1)n个新数据x1+100,x2+100, …… xn+100的平均数是,方差为。

(2)n个新数据5x1,5x2, ……5xn的平均数,方差为。

五、学后反思:

xxx

汉屈群策,策屈群力。快回答为大家整理的13篇初中数学优秀教案到这里就结束了,希望可以帮助您更好的写作初中数学优秀教案。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。