北师大版五年级数学上册《3的倍数的特征》教学设计 篇一
教学目标 :
1、知识目标:掌握3的倍数的数的特征。
2、技能目标:能运用特征判断一个数是否是3的倍数。
3、情感目标:培养学生自主探索的能力,合作学习的品质。让学生感受生活中蕴藏着丰富的数学知识。
教学重点:探索3的倍数的特征。
教学过程:
一、旧知引新
师出示3、4、5三个数
提问:你能用3、4、5这三个数字组成2的倍数和5的倍数三位数吗?
学生汇报,教师板书。
谈话:你是怎么想的?
二、设疑探究
(一)设置教学“陷阱”。
谈话:如果仍用这三个数字,你能否组成是3的倍数的数呢? 试一试。
学生尝试组数,并验证这两个数是否是3的倍数。
师:从这两个能被3整除的数,你想到了什么?能被3整除的数有什么特征?
生:个位上是3的倍数的数能被3整除。(引导学生提出假设①)
(二)制造认知矛盾。
师:刚才同学们是从个位上去寻找能被3整除的数的“特征”的,那么个位上是3的倍数的数就一定能被3整 除吗?
教师紧接着举出16、123、449等数让学生试除判断,由此引导学生推翻假设①。
师:这几个数个位上都是3的倍数,有的数能被3整除,而有的数却不能被3整除。我们能从个位上找出能被 3整除的数的特征吗?
生:不能。
(三)设疑问激兴趣。
师:请同学们仍用3、4、5这三个数字,任意组成一个三位数, 看看它们能不能被3整除。
学生用3、4、5这三个数字任意组成一个三位数, 通过试除发现:所组成的三位数都能被3整除。
师:能被3整除的数有没有规律可循呢? 下面我们一起来学习“能被3整除的数的特征。”(板书课题)
(四)引导探究新知。
师:观察用3、4、5任意组成的能被3整除的三位数,虽然它们的大小不相同,但它们有什么共同点?
引导学生发现:组成的三位数的三个数字相同,所不同的是这三个数字排列的顺序不同。
师:三个数字相同,那它们的什么也相同?
生:它们的和也相同。
师:和是多少?
生:这三个数字的和是12。
师:这三个数字的和与3有什么关系?
生:是3的倍数。
师:也就是说它们的和能被什么整除?
生:它们的和能被3整除。
师:由此你想到了什么?
学生提出假设②:一个数各位上的数的和能被3整除, 这个数就能被3整除。
师:通过同学们的观察,有的同学提出了能被3 整除的数特征的假设,但是同学们观察的仅是几个特殊的 数,是否能被3 整除的数都有这样的特征呢?要说明同学们的假设是正确的,我们需要怎么做?
生:进行验证。
师:怎样进行验证呢?
引导学生任意举一些能被3整除的数, 看看各位上的数的和能否被3整除。(为了便于计算和研究,可让学生任意举出100以内的自然数,然后除以3。)
根据学生举出的数,教师完成如下的板书,并让学生计算出各个数各位上的数的和进行验证。
师:通过上面的验证,说明同学们提出的能被3 整除的数特征的假设怎样?
生:是正确的。
师:请同学们翻开书,看看书上是怎样概括出能被3 整除的数的特征的。引导学生阅读教材第36页的有关内容。
师:什么叫各位?它与个位有什么不同?根据这个特征,怎样判断一个数能不能被3整除?
组织学生讨论,加深能被3整除的数的特征的认识,掌握判断一个数能否被3整除的方法。
三、课堂练习
(一)判断下面各数能否被3整除,并说明理由。
54 83 114 262 837
(二)数369能被3整除吗?你是怎样判断的?有没有更简捷的判断方法?
引导学生发现:3、6、9这三个数字本身就能被3整除,因此它们的和自然能被3整除。判断时用不着把它们相加。
(三)数35462791能被3整除吗?(将369中插入一些数字改编而成。)
引导学生概括出迅速判断一个数能否被3整除的方法:(1)先去掉这个数各位上是3、6、9的数;(2)把余下数位上的数相加,并去掉相加过程中凑成3、6、9的数;(3)看剩下数位上的数能否被3整除。
(四)运用上述判断一个数能否被3整除的方法,迅速判断31965、732659、3946586能否被3整除。
(五)在下面每个数的□里填上一个数字,使这个数有约数3。 它们各有几种不同的填法?
□7 4□2 □44 56□
引导学生掌握科学的填数方法:(1 )先看已知数位上的数字的和是多少;(2)如果已知数位上的数字和 是3的倍数,那么未知数位的□里最小填“0”,要填的其它数字可依次加上3;如果已知数位上的数字和不是3 的倍数,那么未知数位的里可先填一个最小的数, 使它能与已知数位上的数字和凑成是3的倍数, 要填的其它数字可在此基础上依次加上3。
(六)从0、5、6、7四个数字中选择三个数,组成一个3的倍数,有多少种不同的数?
北师大版五年级数学上册《3的倍数的特征》教学设计 篇二
一、温故知新,直接导入
师:前面我们学过了2、5倍数的特征,回忆一下它的具体内容是什么?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
教师板书课题:3的倍数的特征,学生齐读课题。
二、小棒游戏,探究规律
1、师生小游戏
师:首先我们来做一个摆小棒的游戏,怎么玩呢?找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
【评析:改变了以往先让学生猜测3的倍数的特征入手的形式,变为直接就用操作小棒引入,让学生一开始就抛开2、5倍数的特征的负迁移的影响。在课之始创设了学生“摆”老师“猜”这一互动环节。学生用几根小棒在数位表中摆数,无论学生摆的是几位数,老师都能迅速判断出这个数是否是3的倍数。速度远远超过计算器。“老师为什么判断的这么快呢?”学生被彻底征服且急于想知道答案,吊足学生的胃口。】
2、小组合作探究
(1)师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家静静的看一下合作要求——
①男同学操作前两行,女同学操作后两行,记录员将摆出的数记录在表格中。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
师:明白要求后,小组合作完成。
(2)集体交流:
师:哪个小组来交流你们的研究成果?再找个小助手。
第一小组:
师:问问大家你们摆的数没有问题吧!
师:给大家读读,你们圈出了哪些数?你们发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师评价:关键要看小棒的根数,了不起的发现。
师:其他小组还有补充吗?
第二小组:
师:来,介绍一下你们的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
师:真是这么回事吗?以9根为例摆摆看。
学生活动。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
【评析:通过用“小棒摆数活动” 让研究对象直观化,降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。学生借助小棒这个脚手架,在好奇心的驱使下很轻易的就会发现“只要所用小棒的根数是3的倍数,摆出来的这个数就是3的倍数”。】
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。如果把摆小棒换成拨珠子呢?
二、拨珠子,进一步探究
师:(出示计数器)你认识它吗?仔细看,我拨出一个什么数,用了几颗珠子?
板书:345——3+4+5——十二
师:算一算345是3的倍数吗?
师:在你的脑子里想象一个计数器,随意拨出一个数,并想一想:
(1)各个数位上是几颗珠子,一共拨了几颗珠子?
(2)这个数是多少,算一算它是3的倍数吗?
师:和你的同桌交流一下。
师:谁来说说你是怎么拨的?
根据学生的回答,教师操作点课件。
生:个位上有3珠子,十位上有6珠子,百位上有3珠子,一共用了12颗珠子,363是3的的倍数。
生:个位上有5珠子,十位上有5珠子,百位上有0珠子,千位上有5颗珠子,一共用了15颗珠子,5055是3的的倍数。
生:个位上是2颗珠子,十位上有5颗珠子,百位上有1颗珠子,千位上有2颗珠子,一共用了10颗珠子,2152不是3的倍数。
教师根据学生的回答板书,师:用12颗珠子拨出了363,是3的倍数,用15颗珠子拨出了5055也是3的倍数。想一想:用几颗珠子拨出的数是3的倍数?
生1:珠子的颗数是3的倍数,这个数就是3的倍数。
生2:只要各个数位上珠子颗数的和是3的倍数,这个数就是3的倍数。
师:我们的研究又有了新的进展,也记录下来。(板书:各个数位上珠子颗数的和是3的倍数,这个数就是3的倍数。)
【评析:在摆小棒的基础上,引导学生用计数器想像一个数,借助学生对计数器熟练运用的经验,使得学生的思维更加聚焦于对数的特征的研究。虽然每个同学只操作了一次,但是通过学生之间的合作交流,再加上教师的引导,学生们经历了一个典型的通过不完全归纳的方法得出规律的过程。学生再次发现:只要各个数位上珠子颗数的和是3的倍数,这个数也是3的倍数。】
北师大版五年级数学上册《3的倍数的特征》教学设计 篇三
恩格斯说过:“思维是人类文化历史长河中一朵美丽的浪花。”课堂教学中,有效地引导学生思维,不仅可以启迪智慧,也能激发或抚慰人的情怀,使人赏心悦目、动人心弦,给人以美的享受。3的倍数特征这节课教学中,我让学生在猜想——讨论——验证的过程中感受到数学是形象的、有趣味的和美丽的。在学习过程中,师生共同探讨,开阔学生思维,感受教学的乐趣。
【教学片断一】
一、在知识链接中,激活思维
师:我们学习了2、5的倍数的特征,谁来说说?
生1:个位上是0、2、4、6、8的数都是2的倍数。
生2:个位上是0或5的数都是5的倍数。
师:那怎样判断一个数既是2的倍数、又是5的倍数呢?
生3:看这个数的个位是不是0。
师:请一、二组的同学根据自己的学号说说是不是2、5的倍数。
生1:我的学号是1,既不是2的倍数,也不是5的倍数。
生2:我的学号是2,是2的倍数。
【教学片断二】
二、在新知探究中,发展思维
师:看来我们已经掌握了2、5的倍数的特征,今天我们来学习3的倍数的特征,(板书)3的倍数的特征怎样呢?是不是和2、5的倍数的特征一样,只要看“个位”呢?请同学们一起来讨论这个问题。
生1:我认为看个位可以。如:33、36、39它们的个位分别是3、6、9这些数都是3的倍数。
生2:我认为不能只看个位。如:23、16、29它们的个位虽然也是3、6、9,但这些数不是3的倍数。
生3:但也有的数它们不是3、6、9,如:24、45,可是这些数都是3的倍数。
师:那么3的倍数有什么特征呢?你们可以以45为例,在它的前后面添上一个数、两个数、三个数……,老师能很快判断能否是3的倍数。
生1:前面添上2。 (×)
生2:后面添上24。 (√)
生3:前面添上3,后面添上53。 (×)
师:请们用计算器验证一下,看看老师判断对不对?
(学生验证后,产生疑惑)
师:老师判断对不对呀?
生:(齐答)对。
师:其实老师也不是圣人,不过知道其中的奥妙,先掌握其中的规律罢了,你们想知道吗?
生:(异口同声说)想。
北师大版五年级数学上册《3的倍数的特征》教学设计 篇四
教学目标:
1、掌握2、5倍数的特征以及奇数和偶数的概念。
2、能够运用这些特征进行判断。
3、培养学生的概括能力。
教学重点:
1、是2、5倍数的数的特征。
2、奇数和偶数的概念。
教学过程:
一、创设情景,引入新课。
1、复习:根据所学的因数和倍数知识,运用自己的座号说一句完整的话。如:我的座号是5,5是30的因数或5是1的倍数。
同座互说
指名说。
同学们,我们先去看一场电影,座位号是多少的同学应该从双号入口进。
2、游戏
(1)座号是2的倍数的同学起立。
(2)座号是5的倍数的同学起立, 老师分别将2的倍数座号写在黑板左边,5的倍数座号写在黑板右边。
3、引入:2的倍数和5的倍数有哪些特征呢?今天进行研究(板书课题:2、5倍数的特征)。
【反思:设计目的是从学生熟悉的学号引入,学习的材料来源于学生的生活,让学生感到亲切,有利于激发学习的兴趣。从教学实践来看,学生确实兴趣浓厚,达到了既激发兴趣,又提供学习素材的目的。】
二、探究新知
(一)2的倍数的特征。
1、观察:左边集合圈里的2的倍数座号有什么特点?(个位上是0,2,4,6,8。)
2、举出几个2的倍数,看看符不符合这个特点?学生随口举例。
教师:谁能说一说是2的倍数的数的特征?
学生口答后,老师板书:个位上是0,2,4,6,8的数都是2的倍数。
3、奇数和偶数
出示课件:2的倍数的数, 这些数的个位上的数有什么特点?
个位上是0、2、 、 、 的数,都是2的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇(ji)数。
老师指出:自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。习惯上称它们单数、双数。
4、练习:完成课本做一做, 出示课件
下列数中,哪些是奇数,哪些是偶数?
33 98 355 988 0 123
3678 8089 1000 655 5656 881
奇数有:33,355,123,8089,655,881。
偶数有:98,988,0,3678,1000,5656。
【反思:数学思维的方法一般有观察比较、抽象概括、归结演绎等等。设计这个片断的目的是让学生观察根据素材,通过自主学习得出2的倍数的特征,同时培养学生的观察比较、抽象概括的数学思维能力。但在实际中老师提问:“2的倍数学号有什么特点?”后,学生说:“2的倍数都是偶数”。对于这种生成,是我设计中没有预设到的,于是我反问道:“你认为什么样的数是偶数呢?”学生又说“双数就是偶数”,于是我有些急了,不知所以。我只好进一步明确提问:“这些学号的个位上的数有什么特点?”学生这才说到我心中理想的答案:“个位上的数都是0、2、4、6、8等数字”,看来数学课的有些问题不能过于宽泛,要有所指向。同时设计问题时,还要多想想学生可能会怎样回答,多预设几个方案。】
【补充设计:学生完成课本练习后,我临时补充了一个知识点的自然数分类的教学。老师提问:自然数有无数个,0、1、2、3、4、5、6、7……说说这些数分别是什么数?你发现了什么?归纳得出:自然数中,不是偶数,就是奇数。】
(二)5的倍数的特征。
1、教师指右黑板上集合圈:你们能不能用与研究2的倍数的特征的相同方法,找出5的倍数的特征?
2、学生自己动手在课本上找出5的倍数。
在下表中找出5的倍数,并涂上颜色。看看有什么规律。
教师:说一说5的倍数的特征?
个位上是___或___的数,是5的倍数。
板书:个位上是0或者5的数,都是5的倍数。
3、练习:完成课本做一做, 出示课件
下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2的倍数也是5的倍数?
24 35 67 90 99 15
60 75 106 130 521 280
2的倍数:24,90,60,106,130,280。
5的倍数:35,90,15,60,75,130,280,
既是2的倍数也是5的倍数:90,60,130,280。
做完这道题,你有什么收获?
重点指出
个位上是0的数它既是2的倍数又是5的倍数。
为什么?(末位是0的数既是2的倍数又是5的倍数)同意他的说法吗?自己在百数表中找找这样的数?在哪里?
现在问题怎么解决呢?两位同学都想得到它们?
提问:2的倍数有哪些?5的倍数呢?60和90是什么数?
【反思:小学数学知识系统性较强,特级老师张兴华大力提倡“为迁移而教”很有道理。什么是迁移呢?迁移是一个心理学名词,是指一种学习对另一种学习的影响,它广泛地存在于学科教学之中,先前学习中的知识、技能、积极情感对后继学习产生促进作用的叫做正迁移,否则就是负迁移。5的倍数教学比较顺利,正是由于有前面2的倍数特征探索,学生较好地实现了学习方法的迁移。】
三、练习巩固
谈话:今天,我们主要研究了什么?下面的时间,我们就围绕这些知识来练习几道题。
1、选出两张数字卡片,按要求组成一个数。
(1)组成的数是偶数;
(2)组成的数是5的倍数;
(3)组成的数既是2的倍数又是5的倍数;
2、用0、2、5三个数字组成一个三位数。
(1)。组成的数是2的倍数;
(2)。组成的数是5的倍数。
先做第一小题,同桌学生合作摆、写,再组织交流明确方法技巧,然后按照方法完成其余两小题
3、把下表中4的倍数涂上颜色。
4 的倍数是2的倍数吗?今天我们研究了2和5的倍数,4可有点不高兴了,干嘛不研究一下我的倍数的特征呢? 先让学生涂一涂,涂后老师提出:2看了一下4的倍数,可得意了,你们知道2得意什么吗?(4的倍数都是2的倍数)那么4能不能反过来说:2的倍数也都是4 的倍数呢?
4、下面的判断对吗?说说你的理由。
(1)个位上是2、4、6的数,都是2的倍数。
(2)个位上是1、3、5、7、9的数都是奇数。
(3)在全部自然数里,不是奇数就是偶数。
5、思考:奇数与偶数的和是奇数还是偶数?奇数 与奇数的和是奇数还是偶数,偶数与偶 数的和呢?
四、全课总结
今天你有什么收获?
板书设计:
2和5的倍数特征
5的倍数: 15、30、50、65,,,, 个位上是0或5的数 (偶数)是2的倍数: 个位上是0、2、4、6、8的数 (奇数)不是2的倍数 个位上是1、3、5、7、9的数 2的 倍数 5的倍数 作业纸: 在5的倍数中画“ ”
北师大版五年级数学上册《3的倍数的特征》教学设计 篇五
教学目标:
1.知识与技能:使学生理解并掌握2和5的倍数的特征,能准确判断一个数是不是2或5的倍数以及理解并掌握奇数、偶数的含义,能准确判断一个数是奇数还是偶数。
2.过程与方法:让学生在理解2、5的倍数的特征的过程中,使学生的探索、推理、概括等能力得到培养和提高。
3.情感态度与价值观:在分析问题和解决问题的过程中,使学生得到成功的体验和快乐,并帮助学生建立独立获取数学知识和解决问题的信心。
教学重点:
掌握2和5的倍数的特征,理解奇数和偶数的意义。
教学难点掌握2和5的倍数的特征,会判断一个数是不是2或5的倍数。掌握奇数和偶数的含义,判断一个数是奇数还是偶数。会归纳总结其中的规律和方法。
教学工具:
课件、百数表、数字卡片
教学过程:
一、以旧引新,铺垫迁移
师:同学们,在学习新课之前呢,我们先来复习一下上节课我们学的知识。谁来说一说,我们上节课学了什么知识?
生:上节课我们学了因数和倍数。
师:是的,那什么是因数?什么是倍数?他们有什么关系?他们又有什么特点呢?哪位同学来说一说,让老师看一看谁上节课学的最棒。(鼓励学生举手发言,带动学生参与课堂的积极性)
①在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
②因数与倍数是相互依存的。
③一个数的最小因数是1,它的因数是它本身。一个数的最小倍数是它本身,没有倍数。
④一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
师:这位同学说的很对。那我们来做一做下面这道练习题。看一看同学们对这些知识的应用情况怎么样?
做一做
写出下面每个数的因数,然后再写出每个数的倍数(至少写4个)。
20 因数: 倍数:
25 因数: 倍数:
28 因数: 倍数:
20因数1、2、4、5、10、20 倍数20、40、60、80
25因数1、2、25 倍数25、50、75、100
28因数1、2、4、7、14、28 倍数28、56、84、112
师:同学们总结的很完整,说明同学们对上节课学的知识总结的都很好。下面同学们再按要求做一做下面两道题。
(1)从小到大写出10个2的倍数?
生:2的倍数有:2、4、6、8、10、12、14、16、18、20。
(2)从小到大写出10个5的倍数?
生:5的倍数有:5、10、15、20、25、30、35、40、45、50。
师:那同学们能看出来2和5的倍数有什么特征吗?
生:看不出来。
师:那同学们就和老师一起探索一下2和5的特征,看一看我们会发现什么有趣的事情?
2 举例交流,探索新知
二、5的倍数的特征
(1)引入百数表
师:在自然数中,5的倍数有多少个?
生:无数个
师:我们不能一个一个地研究,怎么办呢?
生:选择一部分数进行研究
师:那我们就先在1-100这一百个数中研究5的倍数的特征。
(2)出示百数表,在这些数中找出5的倍数,涂上红色。
(3)师:观察5的倍数,你有什么发现?
生:我们发现100以内5的倍数的个位都是0或者5的数。
(4)师:除了这些数以外,其它5的倍数也有这样的特征吗?我们来举例验证一下。
例1:判断105 225 160 380是不是5的倍数,并说出理由。
生:105个位是5,105÷5=21,105是5的倍数。
225个位是5,225÷5=45,125是5的倍数。
160个位是0,160÷5=32,160是5的倍数。
380个位是0,380÷5=76,180是5的倍数。
师:这进一步验证了3位数中个位是5或者0的数也是5的倍数。那我们来看一看个位不是0或者5的数是不是5的倍数呢?
例2: 202 136 343 564是不是5的倍数?
生:202÷5=40.4,202不是5的倍数。
136÷5=27.2,136不是5的倍数。
343÷5=68.6,343不是5的倍数。
564÷5=112.8,564不是5的倍数。
师:通过以上的两道例题,谁来概括一下5的倍数到底有什么特征?
生:个位上为0或5的数都是5的倍数。
师:是的,学习了5的特征有什么好处?
生:能更快的判断出一个数是不是5的倍数。
师:是的,那我们就来验证一下,同学们猜猜下面的数是不是5的倍数。
练一练
下面的数都是5的倍数吗?
75、280、1325、172、52460
生:75、280、1325、52460都是5的倍数,因为它们的个位都是0或者5;172不是5的倍数,172个位是2,而且172÷5=34.4,不是整数。
师:我们都知道了5的倍数的特征,那同学们知道2的倍数的特征吗?
生:不知道。
师:下面我们就来学习一下2的倍数的特征。请同学们再次拿出百数表。
(二)2的倍数的特征
师:根据研究5的特征的经验,同学们猜一猜2的倍数可能会有什么特征呢?
生:可能和数的个位有关系,个位是几的数是2的倍数特征。
师:同学们猜想的很有道理,但也只是猜想,到底是不是呢,我们来验证一下。
出示百数表,找出2的倍数,涂上绿色。
师:同学们观察一下2的倍数特征,你发现了什么?
生:100以内2的倍数的个位都是2、4、6、8、0的数。
师:是的,除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。
例3:判断124 282 360 458 396是不是2的倍数,并说明理由。
生:124÷2=62,124是2的倍数;
282÷2=141,282是2的倍数;
360÷2=180,360是2的倍数;
458÷2=229,458是2的倍数;
396÷2=198,396是2的倍数。
它们都是个位是0、2、4、6、8的数,而且都是2的倍数。
师:所以2的倍数有怎样的特征?
生:个位为0、2、4、6、8的数,都是2的倍数。
师:很好,那请同学们做一做下面一道题,判断一下哪个是2的倍数,哪个不是,把它们归归类。
例4:做一做
48、125、91、6、307、554、920、43
是 2的倍数:48、6、554、920;
不是2的倍数:125、91、307、43
师:通过以上的练习,相信大家都能确认2的倍数的特征了。学习完了2的倍数的特征,老师还要告诉你们一个有趣的规律。同学们想不想知道啊?(以此引入奇数和偶数的概念)
三、探究深入,总结概念
(一)奇数与偶数
师:我们已经掌握了2的倍数的特征。那这里呢,就出现了这样的一个概念:在整数中,是2的倍数的数叫做偶数(0也是偶数),其它不是2的倍数的数叫做奇数。例如,2是偶数,3是奇数。14是偶数,15是奇数。下面我们来做一做下面的练习题,进一步感受奇数和偶数的概念。
练习三
1、下列数中,那些是奇数?那些是偶数?
33 98 355 0 123 881
8089 1000 988 565 3678 677
生:奇数:33、355、123、881、8089、565、677
偶数:98、0、1000、988、3678
(二)2和5的倍数的特征
师:做一做下面的练习题,看看我们会发现什么?
做一做
下面哪些数是2的倍数?那些数是5的倍数?哪些数即是2的倍数,也是5的倍数?
24 35 67 90 99 15 106
60 75 130 521 280 6018 8100
生:2的倍数:24、90、106、60、130、280、6018、8100
5的倍数:35、90、15、60、75、130、280、8100
即是2的倍数,又是5的倍数:90、60、130、280、8100
师:做完这道题,你发现了什么?
生:即是2的倍数,又是5的倍数的数个位都是0。
师:是的,数学就是这么有意思,可以从不同的角度发现这么多有趣的规律。
4 及时练习,巩固提高
师:今天我们学了5的倍数的特征,2的倍数的特征。通过2的倍数的特征,我们又总结出了奇数和偶数的概念。还有即是2的倍数,又是5的倍数的特征。下面我们做一做下面的练习题,巩固一下今天所学内容。
练一练。
1、按要求用2、3、7、0四个数字组成三位数。(有几个写几个)
2的倍数有
5的倍数有
同时是2和5的倍数的数有
生:2的倍数有:372、732、230、320、302、720、270、702、370、730;
5的倍数有:230、270、370、320、730、720;
同时是2和5的倍数的数有:230、270、370、320、730、720。
2、一个三位数27( ),
(1)当括号里填( )时,此数是2的倍数。
(2)当括号里填( )时,此数是5的倍数。
生:(1)0、 2、 4、 6、 8
(2)0、 5
四、课后小结
1.提问:这节课你都获得了哪些知识?
学生:学习了2的倍数的特征,5的倍数的特征。总结出了奇数和偶数的概念。
2.教师归纳整理。
师:5的倍数的特征:个位上是0或者5的数,都是5的倍数;
2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
奇数:整数中,不是2的倍数的数叫做奇数;
偶数:整数中,是2的倍数的数叫做偶数;
即是2的倍数,又是5的倍数的特征:个位上是0的数,都即是2的倍数,又是5的倍数。
北师大版五年级数学上册《3的倍数的特征》教学设计 篇六
教学目标:
探索2、5倍数的特征,初步理解奇数、偶数的概念。
教学重点:
发现2、5倍数的特征并灵活运用
教学过程:
一、导入新课
师:奥运带给我们的除了那种奋勇拼搏的体育精神,还有一点那就是要提高人们的健身意识。过一段时间我们学校要举行团体操表演,有哪些表演形式呢?我们来看一看吧
(学生认真看表演情况。)
二、探究新知
1、活动一:师:从图中你们知道了哪些信息?还能提出什么问题?
学生观察情境图,说出自己通过观察发现的信息,提出问题,全班交流。
2、活动二:师:我们首先解决“各项表演分别可以选派几人参加”这个问题。请你们想一想,每个方队得人数有没有规律?到问题时要仔细分析、验证,不能轻易下结论。
学生独立思考,然后交流。学生的思考可能停留在图中呈现的人数上,3个5、6个2、5个3。教师可适时引导:各队的人数与2、3、5有没有关系?
3、活动三;
师:在1—100的自然数中,2的倍数有那些?5的倍数有哪些呢?3的倍数有哪些呢?先独立思考,然后小组讨论。
学生自主思考后,可能采用无序排列、有序列举、在百数表中 圈出或涂色等解决问题的方法。
4、活动四
师:同学们了不起,用这么多办法找出了100以内2、5的倍数,那你们有没有发现2的倍数、5的倍数都是一些什么样的数?
师:像2、4、6、8、10、12……都是偶数,1、3、5、7、9、11……都是奇数。
师:你能再说出几个偶数、奇数的例子。
学生独立思考,从不同的角度思考2、5的倍数的特征。
学生认真听讲
学生举例,相互交流。
三、课堂练习
自主练习第1、2题。学生自主练习,教师巡视指导,全班交流。
第3题数学游戏:应用今天学到的知识,看数字卡片说一句话。如:20是偶数,是2的倍数,同时也是5的倍数等。同位两人轮流出卡片,参与游戏。
四、课后小结
师:请同学们说一说这节课你学到了些什么?还有什么问题?你对自己有什么评价?
北师大版五年级数学上册《3的倍数的特征》教学设计 篇七
一、设疑引入新课。
1、复习。
(1)判断下面哪些数是2的倍数?那些数是5的倍数?
18754653
1153242760
(2)2和5的倍数有什么特征?
小结:判断一个数是否是2或5的倍数,都是看这个数的个位就可以了。
2、设疑引入课题。
师:请同学们随意说出一个数,老师能很快判断出它是否是3的倍数。
(1)学生说出一些100以内的数:51、83。
(2)学生说出一些更大的数,有三位数的、四位数的、五位数的:377、
5319、23624。
(师很快判断出它们是否是3的倍数,全体学生用好奇的眼光看着老师)
师:老师为什么能很快判断出这些数是否是3的倍数,究竟3的倍数有什么特征,这节课我们一起来研究3的倍数的特征。(板书课题)
二、探究新知。
1、我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?
学生根据找2、5的倍数的特征的经验,猜想:个位上是3、6、9的数是3的倍数。
2、观察验证:
(1)比赛活动,看谁最快写出8个3的倍数?(指名板演)
36912
15182124
(2)观察这些3的倍数,刚才的同学猜对了吗?为什么?
学生发现:
①3、6、9是3的倍数,但是12、15、18也是3的倍数,而这些数的个位不是3、6、9。
②13、16、19这些数的个位是3、6、9,但是这些数却不是3的倍数。
学生小结:判断一个数是否是3的倍数,只看这个数的个位是不行的。
3、用老方法不能得出3的倍数的特征,怎么办呢?请同学们想一想有什么办法?
提示:同学们把这些3的倍数的各位上的数相加,观察研究一下,看看有什么发现?
(1)学生独立思考。
(2)小组合作探究。
(3)汇报交流:
数12中,1+2=3,3是3的倍数;
数15中,1+5=6,6是3的)www.kuaihuida.com(倍数;
数18中,1+8=9,9是3的倍数;
……
4、有了这些发现,你能猜想到3的倍数有什么特征吗?
生:把一个数各位上的数相加,和是3的倍数,这个数就是3的倍数。
5、举例验证猜想。
师:这个结论是否成立,请同学们任意举例出4个较大的数(学生举例的数有的是3的倍数,有的不是3的倍数):
375565138898640
学生利用这一结论来验证,并分组列竖式计算验证:
①数375中,3+7+5=15,15是3的倍数,而375÷3得到整数的商,所以,它是3的倍数。
②数565中,5+6+5=16,16不是3的倍数,而565÷3得不到整数的商,所以,它不是3的倍数。
③数1388中,1+3+8+8=20,20不是3的倍数,而1388÷3得不到整数的商,所以,它不是3的倍数。
④数98640中,9+8+6+4+0=27,27是3的倍数,而98640÷3得到整数的商,所以,它是3的倍数。
6、得出结论。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。(板书3的倍数的特征)
三、练习提高。(略)
教学反思
在2009学年第一学期,我市就先后组织教师对《评价标准》进行了一系列的研究和学习,积极推动了《评价标准》试行工作的全面铺开。《评价标准》对进一步推动义务教育新课程的实施,在教学领域深化素质教育有着深远的意义,特别是对课堂教学的引领作用更是深入教师们的心中。
一、引领教师沟通知识间的前后联系。
《评价标准》包括小学阶段和中学阶段共18册人教版的数学书相应教学内容的评价要求,明确了各知识点在本册教材、乃至整个义务教育的地位和作用,让我们更好地沟通知识间的前后联系,清晰地看到哪些知识对学生的后续学习起到怎样的作用。
学习内容
知识点
对应教材
评价方式
及示例
数与代数
数的认识
1.因数与倍数
2.2、5、3的倍数的特征
3.质数与合数
4.分数的意义
5.真分数和假分数
6.分数的基本性质
7.约分和通分
8.分数和小数的互化
第二单元
因数与倍数
p12~p26
第四单元
分数的意义和性质
p60~p100
纸笔测试:
示例1~6
纸笔测试:
示例7~20
数的运算
分数的加法和减法
第五单元
分数的加法和加法
p104~p121
纸笔测试:
示例21~25
探究规律
找次品
第七单元
数学广角p134~p137
纸笔测试:
示例26
由《评价标准》第133页这个表可以看出,3的倍数的特征安排在2、5的倍数的特征后面进行教学。学生也许会对本课的学习有一定负面影响,容易从数的末尾数字(个位)进行判断这个数是否是3的倍数。所以在教学本课时要注重教师的引导和学生的自主探究相结合,让学生经历知识的形成过程,真正理解掌握判断3的倍数的方法。此外,这节课和2、5的倍数的特征的教学内容一样,都是在前面因数、倍数的基础上教学的,是后面求最大公因数、最小公倍数的重要基础,从而也是学习约分和通分的必要前提。约分和通分是否熟练直接影响学生后面对分数运算的熟练程度,而约分和通分是否熟练,在很大程度上取决于是否能根据分子、分母数的特征很快看出它们有什么公因数,能否很快求出几个分数的分母的最小公倍数。因此,在这节课中学生是否真正理解掌握3的倍数的特征,将直接影响本册教材的所有后续内容,教学好这部分知识对学生的后续学习具有十分重要的意义。
二、引领教师把握好教学的尺度。
三人行,必有我师焉。以上就是快回答给大家分享的7篇《3的倍数特征》的教学设计,希望能够让您对于3的倍数的写作更加的得心应手。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。