复数没有绝对值的概念,只有模的概念。复数的模:将复数的实部与虚部的平方和的正的平方根的值,记作z。即对于复数z=a+bi,它的模:z=(a+b)。下面高考家长网为大家整理了《复数的绝对值 复数的模》,希望可以在复数的绝对值方面帮助到您。
复数
复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)。由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。复数有多种表示法,诸如向量表示、三角表示,指数表示等。
它满足四则运算等性质。它是复变函数论、解析数论、傅里叶分析、分形、流体力学、相对论、量子力学等学科中最基础的对象和工具。另外,复数还指在英语中与单数相对,两个及两个以上的可数名词。
复数的模
设复数z=a+bi(a,b∈R)
则复数z的模|z|=√a²+b²,
它的几何意义是复平面上一点(a,b)到原点的距离。
复数模的运算法则
|z1·z2|=|z1|·|z2|
┃|z1|-|z2|┃≤|z1+z2|≤|z1|+|z2|
|z1-z2|=|z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
上面就是高考家长网给大家整理的《复数的绝对值 复数的模》,希望可以在复数的绝对值方面为您解惑。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。