证明方法
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
可以看到,这两个正方形的边长都是a+b,所以面积相等.即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。
勾股定理证明
1.以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。
2.AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。
3.证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。
十六种证明方法
加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法。
上面这《勾股定理的证明方法是什么》就是高考家长网为您整理的勾股定理的证明相关知识,希望可以给予您一定的参考价值。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。