作为一名老师,时常需要准备好教学设计,借助教学设计可以更好地组织教学活动。教学设计应该怎么写才好呢?高考家长帮小编精心为朋友们带来了倒数的认识教学设计优秀5篇,希望能够帮助到您。
《倒数的认识》教学设计 篇一
一、教学内容:
九年义务教育六年制第九册第二单元《倒数的认识》
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15;
生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片 (六位同学举着卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 1/7/8 0.4
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。
2.你是怎么找出7/4的倒数的?
……
提问: 我们怎样才能很快地找到一个数的倒数?为什么?
4.练习 请剩下的没有找到朋友的同学继续找倒数
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法
三、 巩固练习
(一)填空
1.因为5/3*3/5=1,所以()和()互为();
2.因为15*1/15=1,所以()和()互为 ();
3.4/7与()互为倒数;
4.()的倒数是6/11
5.()的倒数是2
6.1/8的倒数是()
7.1/2/7的倒数是()
8.0.3的倒数是()
(二)判断
1.得数是1的两个数互为 倒数。()
2.互为倒数的两个数乘积一定是1。()
3. 1的倒数是1,所以0的倒数是0 。()
4.分数的倒数都大于1。()
(四)思考
4/5*()=()*8
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、 布置作业
简评:
一、自主学习中让学生勇于创新
新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。
二、在游戏活动中实现新知的推进
游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。
倒数的认识教案 篇二
分析
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学情分析
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
教学目标
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的`能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点和难点
理解倒数的意义,会求一个数的倒数。
教学过程
教学环节
教师活动
预设学生行为
设计意图
一﹑创设活动情境
倒,你对这个字怎么理解?
那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?
出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.
具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。
学生说,就是把它倒过来,还做了个手势颠倒位置。
学生有可能会说,每组中都是一个是真分数一个是假分数。
还有的可能会说第一个分数的分母是第二个分数的分子第一个分数的分子是第二个分数的分母
学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。
设疑,让学生产生求知的欲望。
从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。
让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。
二 ﹑探究讨论,深入理解
让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?
学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。
乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。
让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。
三﹑运用概念,探讨方法
3/5的倒数是( ),
8的倒数是( ),
0.5的倒数是( )
1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。
2. 8可以写成8/1,所以8的倒数是1/8。
3. 0.5也可以写成1/2,所以0.5的倒数是2.
让学生归纳总结出找倒数的方法。
四、补充概念,自我构建
0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。
1的倒数是1 。
0没有倒数。因为0不能做为分数的分母。
加深对0没有倒数的理解;
加深对倒数知识的理解;
学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。
五、巩固练习,形成技能
1、同桌互说倒数;
2、判断。
(1) 5/9是倒数,9/5也是倒数。( )
(2)0的倒数还是0.( )
(3)一个数的倒数一定比这个数小。( )。
3、开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )
学生会很活跃。
加深对0没有倒数的理解;
加深对倒数知识的理解;
开放题让学生的思维得到更深层次的拓展。
六、全课小结
这节课你学会了什么?
与教师一起总结
培养学生的表达能力以及加深对倒数知识的理解。
板书设计
倒数的认识
倒数的意义:乘积是1的两个数叫做互为倒数。
求倒数的方法:1.分数——分子分母调换位置。
2、整数或小数——先化成分数,再调换分子分母的位置。
1的倒数是1, 0没有倒数。
倒数的认识教学设计 篇三
教学目标:
1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学过程:
一、情境导入,引出问题
1. 谈话理解“互为”。
师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?
让一名学生(甲)说出自己的好朋友是谁?(乙)
师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2. 游戏,按规律填空。
吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )
(1 )学生观察填空,指名回答,并说出是怎么样想的。
(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的认识。
5. 师:看到这个课题,大家想提什么问题?
根据学生回答,选择板书。如:
(1 )什么是倒数?
(2 )怎么样求一个数的倒数?
(3 )认识倒数有什么作用?……
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、 合作探究、解决问题
1. 探究倒数的意义。
(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?
(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?
(3 )小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
A :分子、分母相互调换位置的两个数叫做互为倒数。
B :乘积是1 的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)
2. 探究求倒数的方法。
(1 )学习例1 :写出7/8 、5/2 的倒数。
A :学生试写,教师巡视,提醒书写格式。
B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
C :学生交流求一个分数倒数的方法。
(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A :学生选择一种研究,教师巡视指导。
B :学生交流汇报,教师分别板书一例。
C :引导学生概括求倒数的方法。
(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。
1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?
1 的倒数是它本身,0 没有倒数。
求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1. 下面哪两个数是互为倒数。
4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8
2. 写出下面各数的倒数。
4/11 , 16/9 , 35 , 15/8 , 1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3. 争当小法官,明察秋毫。
(1 )1 的倒数是1 。(2 )所有的数都有倒数。
(3 )3/4 是倒数。(4 )A 的倒数是1/A 。
(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。
(6 )7/5 的`倒数是7/2 。
(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。
(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。
4. 填空。
3/4 ×( )=1 7 ×( )=1
2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1
5. 游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
倒数的认识教案 篇四
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
教学目标:
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、 创设活动情景,引入概念
师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。
《倒数的认识》教学设计 篇五
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,。.。.。.不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,。.。.。.但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。