角函数教案 篇一
一、知识与技能
1.能从二倍角的正弦、余弦、正切公式导出半角公式,了解它们的内在联系;揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识。 并培养学生综合分析能力。
2.掌握公式及其推导过程,会用公式进行化简、求值和证明。
3.通过公式推导,掌握半角与倍角之间及半角公式与倍角公式之间的联系,培养逻辑推理能力。
二、过程与方法
1.让学生自己由倍角公式导出半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;
2.通过例题讲解,总结方法。通过做练习,巩固所学知识。
三、情感、态度与价值观
1.通过公式的推导,了解半角公式和倍角公式之间的内在联系,从而培养逻辑推理能力和辩证唯物主义观点。
2.培养用联系的观点看问题的观点。
【教学重点与难点】:
重点:半角公式的推导与应用(求值、化简、证明)
难点:半角公式与倍角公式之间的内在联系,以及运用公式时正负号的选取。
【学法与教学用具】:
1. 学法:
(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距。
2. 教学方法:观察、归纳、启发、探究相结合的教学方法。
引导学生复习二倍角公式,按课本知识结构设置提问引导学生动手推导出半角公式,课堂上在老师引导下,以学生为主体,分析公式的结构特征,会根据公式特点得出公式的应用,用公式来进行化简证明和求值,老师为学生创设问题情景,鼓励学生积极探究。
3. 教学用具:多媒体、实物投影仪。
【授课类型】:新授课
【课时安排】:1课时
【教学思路】:
一、创设情景,揭示课题
二、研探新知
四、巩固深化,反馈矫正
五、归纳整理,整体认识
1.巩固倍角公式,会推导半角公式、和差化积及积化和差公式。
2.熟悉"倍角"与"二次"的关系(升角--降次,降角--升次).
3.特别注意公式的三角表达形式,且要善于变形:
4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的"本质"是用?角的余弦表示角的正弦、余弦、正切。
5.注意公式的结构,尤其是符号。
六、承上启下,留下悬念
七、板书设计(略)
八、课后记:略
角函数教案 篇二
1、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:
即:一角的正弦大于另一个角的余弦。
2、若 ,则 ,
3、 的图象的对称中心为 ( ),对称轴方程为 。
4、 的图象的对称中心为 ( ),对称轴方程为 。
5、 及 的图象的对称中心为 ( )。
6、常用三角公式:
有理公式: ;
降次公式: , ;
万能公式: , , (其中 )。
7、辅助角公式: ,其中 。辅助角 的位置由坐标 决定,即角 的终边过点 。
8、 时, 。
9、 。
其中 为内切圆半径, 为外接圆半径。
特别地:直角 中,设c为斜边,则内切圆半径 ,外接圆半径 。
10、 的图象 的图象( 时,向左平移 个单位, 时,向右平移 个单位)。
11、解题时,条件中若有 出现,则可设 ,
则 。
12、等腰三角形 中,若 且 ,则 。
13、若等边三角形的边长为 ,则其中线长为 ,面积为 。
14、 ;
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。