1. 主页 > 范文大全 >

梯形的面积教学设计优秀23篇6-15-57

在教学工作者实际的教学活动中,可能需要进行教学设计编写工作,编写教学设计有利于我们科学、合理地支配课堂时间。如何把教学设计做到重点突出呢?

梯形的面积教学设计 1

梯形的面积教学设计优秀23篇6-15-57

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的`体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象 概括能力,将转化策略的教学融入到学生 的“拼 、剪、画、说”活动中,使学生领悟转 化思想,感受事物之间是密切联系的,使 学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析 问题和解决问题的能力,通过演示和操作,让学生在拼 剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点:

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点:

梯形面积公式的推导过程。

五、教学过程设计

(一)导课

1、我们都学过哪些图形的面积?

2 有两个小朋友因求图形的面积需要我们的帮忙。

3、梯形的面积公式是什么呢?(板书课题)

(二)新知

1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、你能用我们学过的转化思想推导梯形的面积计算公式吗?

3、学生动手操作

4、学生展示自己的方法。

5、分析转化后的图形与梯形的关系,推导出梯形的面积公式。

梯形的面积=(上底+下底)×高÷2

6、用字母表示。

S = (a+b) h÷2

(三)应用知识

1、口答练习运用公式。

2、运用公式解决实际问题。(学生自己解答例3)

3、提升练习

(四)课堂总结

1、通过这节课,你有什么收获?

2、课后研究:梯形面积和三角形面积之间的关系?

《梯形的面积计算》教学反思 2

一、提出问题,激发兴趣

我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

二、注重合作,促进交流

学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的。面积公式了!

学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

三、思维拓展,能力提升

新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、 下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

《梯形的面积》教案 3

今天我说课的内容是:

一、说教材

1、说教材的地位和作用

《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

2、说教学目标、重点、难点

根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:

知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点: 理解并掌握梯形面积计算公式,正确计算梯形的面积。

教学难点: 梯形面积计算方法的推导过程。

二、说学生

由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。

三、说教学策略

根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:

1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、采用“小组活动,合作探究的教学方法”。

在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。

3、采用直观教学法。

在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。

通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。

四、说教学实施过程

基于上述认识与理解,我对梯形的面积教学流程作了如下设计:

第一环节:创设情境,导入新课

上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。

第二环节:动手操作,探究新知

新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。

第三环节:合作探究,发散验证

在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。

这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到 既突出“重点”,又化解“难点”的目的。

第四环节:应用公式,解决问题

数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:

第一题:是判断题,加深学生对推导公式的印象。

第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。

第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。

第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。

第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。

练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。

第五环节:课堂回顾,总结收获

成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。

《梯形的面积》教案 4

一、说教材

1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。

2、教学目标:

认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。

能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,

情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

3、教学重、难点:

重点:使学生掌握梯形面积的计算公式。

难点:理解梯形面积计算公式的推导过程。

二、说教法与学法

1、根据几何图形教学的特点,我采用了以下几点教法:

①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;

②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。

2、通过本节课的教学,使学生掌握一些基本的学法:

①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;

②让学生学会自主发现问题,分析问题,解决问题的方法。

三、说教学过程

新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:

(一)、创设情境,引出问题。

1、课件出示“神七”发射实况

2、谈话引出课题

梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉

(二)、自主探究,合作交流

1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)

〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉

2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)

3、自主探究,合作学习

学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉

4、分小组展示汇报,教师深化点拔。

教师板演推导过程。

5、引导学生用字母表示公式:s=(a+b)×h÷2

6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)

〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉

(三)、学以致用,解决问题

1、学习例3

(1)、借助教具演示,理解“横截面”的含义。

(2)、弄清渠口、渠底、渠深各是梯形的什么?

(3)、学生尝试计算横截面积。

〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

(四)、应用深化,巩固练习:

1、做一做:请两名学生板演。

2、课件出示练习题。

(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)

(五)、总结,反思体验

回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。

〈这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。〉

四、板书设计

板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。

五年级数学《梯形面积的计算》教案 5

教学目标:

1、通过学生操作拼图,使学生在理解的基础上,总结概括并掌握梯形面积的计算公式,学会用字母表示公式,并能正确计算梯形的面积。

2、通过多媒体的直观演示,让学生在观察比较、动手操作的基础上,发展学生的空间观念,进一步学习用转化的方法思考问题。

3、培养学生的分析、综合、抽象、概括以及解决实际问题的能力,培养学生创新意识。

教学重点:

掌握梯形面积的计算公式,并能够运用公式正确计算梯形的面积。

教学难点:

梯形面积计算公式的推导。

教学用具:

计算机课件、实物投影、两个完全一样的一般梯形(若干)、直角梯形、等腰梯形,并标有梯形的各部分名称

学具:同上、一把剪刀

教学过程:

一、复习铺垫

1、同学们,谁还记得我们认识了哪些平面图形?

2、在这些图形中,已经学过哪些图形的面积?谁给大家说一说?

3、过渡语:学习平行四边形和三角形的面积时,我们是把新的图形转化成学过的图形,推导出面积的计算公式。今天这节课,我们继续用这种方法来研究梯形的面积。

4、板书课题:梯形面积的。计算

二、合作探究,推导公式

1、老师给大家几个思考讨论题,请一个同学读一读。出示思考题:

(1)请你拼一拼、摆一摆、折一折、剪一剪,把梯形转化成学过的图形。

(2)梯形的面积与转化后图形的面积有什么关系?

(3)转化后图形的各部分相当于梯形的哪些部分?

(4)试着推导出梯形的面积公式。

2、现在同学们小组合作,看看谁能够通过自己的努力,发现梯形面积的计算公式,并按照思考题的顺序进行讨论。

3、学生拼摆讨论,教师巡视点拨。

4、汇报拼摆过程。学生前边演示,叙述推导。

梯形的面积教学设计 6

重点难点

使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

教学准备

含资料辑录或图表绘制

教学的过程

一、第2题

让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

二、第3题

右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的'长度就是梯形的高。

三、第5题

要注意两个问题:

1、统一面积单位;

2、讲清楚数量关系。

四、第6题

先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

五、针对学生在学习过程中出现的问题适当的进行补充和强化。

通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

五年级《梯形的面积》教案 7

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教具准备:

1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

3、学生将教科书第147页上面的两个梯形剪下来。

教学过程:

一、复习。

出示三角形图。

问:三角形的面积怎样求?

这个三角形的面积是多少?

三角形的面积计算公式我们是怎样推导出来的?

怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

二、新课。

1.教学梯形面积的计算公式。

出示教科书第80页上面的梯形图。

问:这个图形是什么形?(梯形)

师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

平行四边形的底等于什么?(等于梯形的上底、下底之和)

平行四边形的高和梯形的高有什么关系?(相等)

平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

一个梯形的面积怎样算?(提示学生回答,

教师板书:(3+5)×4÷2

=8×4÷2

=32÷2

=16(平方厘米)

师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

平行四边形的高是什么?(就是梯形的高)

板书:

平行四边形的面积=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

S=(a+b)×h÷2

问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

2.应用出的梯形面积公式计算梯形面积。

(1)出示第81页例题。

指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

问:这个梯形的上底是多少?下底呢?

这个梯形的高是多少?

梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

三、巩固练习。

练习十九第1、2题。

四、作业。

练习十九第3、4题。

《梯形的面积》教学反思 8

教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:

一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。

二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。

三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。

介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。

应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。

五年级《梯形的面积》教案 9

教学目标:

1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

教学重点:

理解并掌握梯形面积公式,会计算梯形的面积。

教学难点:

自主探究梯形面积公式。

教具准备:

CAI、完全一样的梯形若干个。

学具准备:

每生准备两个完全一样的梯形。(有等腰、直角、一般)

课前预习:

梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。

课前准备:

谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

教学过程:

一、创设情境,激发兴趣。

(出示情境图)。

谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

师:根据发现,你能提出什么数学问题?

学生观察情境图,提出问题。

生:1号甲鱼池的面积有多大?

师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

生:1号甲鱼池能放养多少甲鱼苗?

二、自主探究梯形的面积计算方法。

1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

生:梯形。

师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。

2.小组讨论交流,教师巡视了解。

3.展示、汇报交流。

师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。

生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

师:谁有不同的方法?

生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:这个同学说的太好了。大家认为这个方法好不好?

这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

生:平行四边形的底,平行四边形的高。

师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

师:这个方法是不是所有的两个完全一样的梯形都可以用。

生:是两个直角梯形。

师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

第一种是把梯形分割成一个三角形和一个平行四边形;

第二种是把梯形分割成两个三角形;

第三种把两个完全一样的梯形拼成了一个平行四边形。

表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

生:上底和下底,高

生:与腰有关。

师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

三、探究操作,推导出梯形面积公式

(一)出示问题,明确目标

我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

师板书:两个完全一样的梯形拼成平行四边形

梯形的面积=拼成平行四边形面积÷2 =底×高÷2。

拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

(二)自主探究

合作学习

小组内讨论交流。

学生分组动手操作,教师巡视指导。

教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

(三)成果交流,质疑解难

1.全班展示回报

师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?

师:你们也是这样想的吗?哪个小组再来说说你们的做法?

2. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

梯形面积=平行四边形面积÷2 梯形面积=底×高÷2 师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

3.师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

板书面积公式:梯形的面积=(上底+下底)×高÷2。

提问:(上底+下底)×高算的是什么?为何要除以2?。

4.学习字母表达式

谈话:谁能用字母表示?说说每个字母分别表示什么?

师:S=(a+ b )×h ÷2(板书)

四、运用知识,解决情景问题。

师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

五、随堂检测,巩固目标。

师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。

挑战自我:

一、判断

1、两个梯形就可以拼成平行四边形。()

2、梯形的面积一定比平行四边形的面积小。()

3、在下图中平行四边形的面积是梯形面积的2倍。()

师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?

二、(挑战自我)

解决问题

1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,

这个梯形台的平面是多少平方米?

2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?

3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?

师:显示我们聪明才智的机会到了,请同学们大显身手。

4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。

学生独立练习,全班交流。

六、小结。

通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?

同学们收获这么多,你们认为学习快乐吗?希望同学们快乐地学习,快乐地成长,谢谢大家。向在座的老师说再见。

《梯形的面积》教案 10

一、教学目标

1.在实际情境中,认识计算梯形面积的必要性。

2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

4.通过小组合作学习,培养学生合作学习的能力。

二、教学设计

(一)新知探索

(一)呈现实际情境,感受计算梯形面积的必要性

师:孩子们,这是一幅堤坝的图案,知道堤坝有什么作用吗?

生:它是用来防水灾的。

师:对了,它是一种防水拦水的建筑物,请看,这是它的横截面,这个横截面是个什么图形吗?

生:梯形。

师:堤坝横截面是梯形是因为水的压强随深度增加而增大,因此在筑堤坝时要将下部做的又宽又厚,这样既能防止强大的水压将堤坝压垮,又节省材料!你还记得梯形各部分的名称吗?

生:上底,下底,还有高。

师:那么这个堤坝的横截面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?想想我们在学习三角形的时候是怎么开始的?

生:可以象三角形那样把梯形转化为学过的图形。

师:孩子们学得真好。我有个建议,发挥小组的力量,共同合作探究。

(二)提供材料,自主探究图形的转化过程

1、提出小组合作的要求

师:听清楚老师的要求:

a.利用你们手上的梯形学具,独立思考能把梯形转化成已学过的什么图形。

b.想:拼成的图形和原来的梯形有什么关系?

2.自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

3.全班汇报交流

师:同学们已经用不同的方法把梯形转化成了我们学过的图形,哪一个小组愿意先上来给我们讲一讲。

生1:我们小组的方法是用两个完全相同的梯形拼成一个平行四边形。这个平成的平行四边形的底就是梯形上底加下底的和,高还是原来梯形的高,所以梯形的面积是平成的平行四边形的一半。

生2:我们用的是两个完全一样的直角梯形,拼成的是一个长方形,长方形的长是梯形的上底加下地的和,长方形的宽是梯形的高,梯形的面积是这个长方形的一半。

生3:

4.公式的推导

师:(展示教具)对了,用两个完全一样的梯形可以平成一个平行四边形,梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。梯形的面积是所拼平行四边形面积的一半。

生:梯形的面积=(上底+下底)×高÷2

(教师板书梯形面积计算公式)

师:我再请一位孩子来流利的说出这种推倒的方法。

生:有没有小组是其他的办法的?

生:我们小组用的是割补法,就是沿梯形高的一半分割成两个梯形,再转化成平行四边形。高是原来的一半了,所以推导出梯形的公式。

生3:我们是把一个梯形剪成了两个三角形,利用乘法分配律,用三角形的公式推出梯形的公式。

师:同学们介绍了各种推导方法,你们都推出了梯形的面积。 这可是我们大家智慧的结晶,我们的同学真了不起!

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:s=(a+b)h÷2

师:谁来说说,想算出大坝横截面的面积应该知道什么条件呢?

生:上底,下底,高

师:对了,这是求梯形面积的重要条件,谁说一说该怎么列式呢?

生:(20+80)*40/2=200

(二)联系实际,巩固运用

1.试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积。(只列市不计算)

(1)梯形梯田的面积

(2)出示篮球场的罚球区图形,请计算出罚球区的面积。

(3)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2.练一练第1、2、3题,让学生独立完成。

(三)课堂小结

师:通过今天的上课,谈谈你的收获。

师:是的,这节课我们通过操作,观察,比较,分析,推导出了梯形面积的计算公式,真了不起,今后同学们在日常生活中要灵活运用,提高解决有关实际问题的能力。

《梯形的面积》教案 11

教材分析:

本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。

本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。

教学目标:

1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:理解并运用梯形的面积计算公式。

教学难点:梯形面积公式的推导过程。

教学关键:怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。

教学过程:

一、课前复习

同学们,前几天我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?

(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)

请同学们看这幅图片,汽车玻璃是什么形状的 (课件出示课本88页汽车图) ?你会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积

(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)

二、探索转化:

1、引导学生提出解决问题方向:

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?

(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)

2、动手转化:

(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)

小组活动一:

(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?

小组合作交流,老师巡视指导。

全班汇报。

学生可能出现的情况:

(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)

3、公式推导:

同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。

小组活动二:

现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?

小组交流一下,把你们组的发现或结论写下来。

全班交流自己的发现或结论。

归纳总结梯形的面积计算方法。

梯形面积 =(上底+下底)x高÷2 为什么要除以2呢?

(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)

4、用字母表示梯形面积公式

同学们,如用a表示梯形上底,b表示下底, h表示高,s表示面积, 谁能用字母表示出梯形的面积公式?指名说,老师板书。

其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。

(鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)

三、应用公式解决问题

1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!

课件出示例3主题图

同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,

它的的横截面的一部分是梯形,现在我们要求这个横截面的面积。谁知道横截面是什么意思?

同学们请看图,你能求出这个梯形的面积吗? 学生试做,二生板书。

订正时,让学生评价,重在理顺学生的解题思路。

(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, “学以致用”,来解决生活的实际问题。)

2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗? 课件出示玻璃的数据,学生试做,二生板书。集体评价。

(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

四、练习检测:

1、填空:

两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于( ), 拼成的平行四边形的高等于( ) 、梯形的面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。

(理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)

2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。

(1)两个面积相等的梯形可以拼成一个平行四边形。 ( )

(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。 ( )

(3)梯形的面积等于平行四边形面积的一半。 ( )

(4)两个梯形面积相等,但形状不一定相同。 ( )

五、反思总结,拓展延伸

1、学生谈收获,谈学习方法。

2、组内互评:这节课你最想表扬谁,为什么?

《梯形的面积》教案 12

一、教学内容分析:

1、教学主要内容:书27页

2.教材编写特点:

这一教学内容是在学生学会平行四边形、三角形面积的计算并形成一定空间观念的基础上进行教学的。教材编写时注重把学生当作教育的可开发资源进行挖掘,让他们通过操作,进一步学习用转化的方法思考,同时继续渗透割补、旋转和平移的思想,以便于学生理解梯形面积的推导公式。

3、教材编排特点

(1).从求堤坝横截面做好防洪工作准备的实际情境引入,说明数学在现实生活中的存在,使学生感受知道“梯形的面积计算”的必要性,通过模型演示,使学生了解横截面的含义。

(2).通过已学的知识,如三角形的面积、平行四边形的面积等公式,将梯形转化成已学图形,来推导出梯形的面积计算公式。

4、我的思考

《梯形的面积》这一课的教学重点是认识是面积公式的推导,已经利用梯形面积计算公式解决实际问题。

在设计这一课的教学时,我主要考虑体现以下这样几个方面:

1、紧密联系生活。让数学源于生活,归于生活。

数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。

2、体现学生的主体性,让每个学生都能主动参与学习。

学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习

的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。

3、着重体现学生主动建构知识意义的过程。

本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。

二、学生分析

1.学生已有知识基础:学生已经学习了平行四边形、三角形面积的计算。

2.学生已有生活经验和学习该内容的经验:五年级学生对于面积计算并不陌生,从基础知识和基本技能方面来看,准备状况是良好的。

3.学生学习该内容可能出现的情况会很多,因为通过将新知转化为旧知进行梯形面积公式的推导,方法应该会有很多种,因此教师要给学生多一点时间思考。

4.在探索过程中利用小组合作学习方式,一定要在独立思考的基础上,另外,有可能学生在操作的过程中可以将提醒转化为已学图形,但在面积推导的过程中会出现问题,因此,有必要将推导过程中出现的问题和全班学生一起商量,探讨。

5.我的思考:学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。课中让学生通过观察、比较推理得出结论。以及如何将新知与旧知及相互之间如何转化,更是把学生推到了前台,让他们自己来推导出结果并解决实际问题。

三、学习目标

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在拼剪中感受数学知识的内在美,体验创新的乐趣。

四、教学活动

活动

内容

活动的组织与实施

设计意图

时间分配

导入新课,认识千米

出示情境:求堤坝横截面面积

师:什么是“横截面”,生可能回答有“侧面、一边”等等。

师:出示堤坝的模型,帮助学生理解“横截面”

师:横截面是什么形状的?

生:梯形。

师:要求横截面的面积,就是要求梯形的面积。

梯形的面积该如何求呢?

师:和学生一起回忆平行四边以及三角形面积计算公式是如何推倒的。并请学生示范三角形面积计算公式如何推导的。(注:重点让学生回忆起将两个完全一样的三角形拼成平行四边形来进行推导)。

师:那我们能不能将梯形也转换成已学图形来推倒出它的计算公式呢?

生:可以!

让学生发现问题,需要找到解决问题的方法。增强学生学习的主动性。

5

尝试推导公式

师:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式。

提纲:

(1)用两个完全一样的梯形可以拼成一个________________形。

(2)这个平行四边形的底等于____________________,高等于___________________.

(3)每个梯形的面积等于拼成的平行四边形面积的____________________.

(4)梯形的面积=____________________________.

学生通过已学知识来尝试推导新知,培养他们独立探究的能力,节时高效。

6

探索梯形面积计算公式的推导

师:刚利用两个完全一样的梯形拼成平行四边形推导出梯形的面积计算公式。那么现在你能不能将一个梯形转化为我们所学过的图形来推导出梯形的面积计算公式呢?下面以小组为单位,尝试着进行推导。

生小组合作探究,师巡视指导。

学生进行汇报:

1、可以把梯形转化为两个三角形,两个三角形面积的和就是梯形的面积。

2、可以把梯形先分成两个小梯形,再转话成平行四边形。转化成的平行四边形的面积的一半就是原来梯形的面积。因为平形四边形的高是原来梯形的高一半。

3、将体形分成一个平行四边形和一三角形。平行四边形和三角形面积之和就是梯形的面积。

4、可以将梯形的上底延伸到一个顶点,就变成了一大三角形,大三角形的面积减去小三角形的面积,剩下的就是梯形的面积。

……

师:在学生讲解的过程中板书他们的方法。

另外如遇到推导过程有难度的,师可以稍做讲解,帮助学生理解。

小结:梯形的面积计算公式:

梯形的面积=(上底+下底)×高÷2

师:如果用s表示梯形的面积,用a和b分别表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面积公式用字母表示可以怎么写?

生:s=(a+b)×h÷2

师:利用一分钟的时间记忆。

通过小组合作的交流与探索,发现新的方法,让学生了解到方法多样化,在探索的过程了解到数学的神奇。培养学生的合作意识,提高学生的学习兴趣。

24

解决问题

师:现在我们已经知道了梯形的面积计算公式,那么能不能利用它求出堤坝的横截面的面积呢?(能!)那么请你们求出堤坝横截面的面积。

集体订正

把所学知识应用到实际生活当中去

5

拓展

应用以及练习

完成课后习题。特别是第四题,让学生各自交流自己的想法,得到最简便的方法求出圆木的根数。

教学反思:课标的基本理念就是要让学生“人人学有价值的数学”,梯形的面积计算无外乎是上底加下底的和乘高除以2,要记住这个公式很容易,然后再花大量的时间进行各种题形的训练,学生的确可以很快算出答案,考出很高的分数,可是,对于他们实践能力和创新思维的培养却没有提供任何的时间和机会,在新的教学理念的指引下,学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。

五年级《梯形的面积》教案 13

教学目标:

1、通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

2、在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

1、公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

2、教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

二、练习巩固

1、独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的面积公式;列式解答。

2、完成第14题

先议:

⑴左图是什么图形?求面积需要哪些条件?怎么取得?

⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

梯形面积计算教学设计 14

教学目标

1.使学生在理解的基础上探索并掌握梯面积计算公式的推导过程,能利用公式求梯形的面积。

2.掌握转化的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点

梯形面积计算公式的推导和利用

教学难点

运用转化的方法探究梯形的面积计算公式

教学具准备

剪刀,一个梯形,方格纸

教学过程

一、复习欣赏、引入新课。

1.展示生活中的梯形,温故引新

师:这就是我们生活中的梯形。你能说出它各部分的名称吗?请你边说边用你的小手指一指。你还想知道什么?(出示课件)

生:面积

师:大家回忆一下,三角形的面积计算公式是什么?三角形的面积计算公式是怎么推导出来的?(ppt演示)

生:用两个完全一样的三角形拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形的高,三角形的面积是平行四边形面积的一半。沿三角形两边的中点剪开后拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形高的一半,所以三角形的面积是底乘高除以2

师:通过剪拼转化成我们学过的图形,找到他们之间的联系在推导。

2.出示课题

师:今天我们继续用转化的方法学习梯形的面积。(板书课题:梯形的面积)

师:谁知道梯形的面积公式?

生:梯形的面积=(上底+下底)×高÷2

师:如果用a、b、h分别表示梯形的上底、下底与高,用s表示梯形的面积,梯形的面积计算公式还可以怎么表示?

生:S梯形=(a+b)×h÷2

【设计意图】本环就展开想象,在兴趣盎然的状态中打开了思维,培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力,初步感知解决问题的途径和方法。

二、提供材料、动手操作、公式推导。

1.猜想梯形面积公式可能的推导过程

师:谁愿意猜一猜梯形面积的计算公式可能是怎样推导出来的?

生1:用两个完全一样的梯形拼成平行四边形

生2:把个梯形分割成两个三角形

生3:把一个梯形转化成三角形来推导

生4:把一个梯形转化成平行四边形来推导

师:同学们对梯形面积的计算公式推导作了大胆的猜想,但光有猜想是不够的,我们还要进行探索研究,通过事实来说明。

2.提供材料,探索研究

师:刚才同学们提到用两个完全一样的梯形拼成平行四边形推导,但老师今天只准备一个梯形怎么办?(课件出示图一)

生:画一个同样的梯形进行推导

师:请先想象一下,然后拿出材料画一画,再推导面积公式(学生研究,然后汇报并白板操作)生:两个完全一样的梯形拼成一个平行四边形,平行四边形的底是梯形上底与下底的和,平行四边形的高是梯形的高,梯形的面积是平行四边形面积的一半。

师:“(上底+下底)×高”表示什么?求梯形的面积为什么还要除以2?

生:(上底+下底)×高求的是平行四边形的面积,用两个完全一样的梯形拼成平行四边形,除以2求的是梯形的面积。

师:通过刚才的学习,用两个完全相同的梯形拼成一个平行四边形确定能推导出梯形的面积计算公式,但是也有同学猜想用一个梯形也能转化成平行四边形、三角形、长方形来推导,你们觉得可以吗?

(2)用一个梯形推导梯形面积计算公式(学生再次研究,然后汇报并白板操作)

师:想办法把一个梯形剪或拼成平行四边形或三角形,再推导出面积公式。

生1:我们沿着梯形两腰中点的连线将梯形剪开(白板操作)转化成一个平行四边形。平行四边形的底等于梯形上底与下底的和,平行四边形的高只有梯形高的一半,(上底+下底)×高÷2,求出的是这个平行四边形的面积,也就是梯形的面积。所以梯形的面积=(上底+下底)×高÷2。

师:上底与下底的和表示什么?高÷2又表示什么?

生:上底与下底的和表示平形四边形的底,高÷2表示平行四边形的高。

师:那位同学是转化成三角形来推导的?

生2:我们沿着梯形一个顶点和一条腰的中点分割下来,把它转化成三角形。三角形的底等于梯形的上底与下底的和,梯形的高等于三角形的高。所以梯形的面积=(上底+下底)×高÷2。(学生白板操作)师:你们是沿着腰上的任意一点进行分割的?

生:必须要沿着梯形一腰的中点与顶点的连线进行分割,剪下来才能拼成一个三角形。

师:上底与下底的和表示什么?

生:上底与下底的和表示三角形的底

生3:我们把梯形分割成两个三角形,方格纸中读出每个三角形的底和高,两个三角形面积和就是梯形的面积,再在方格纸中读出梯形上底,下底,高,从而推出梯形面积公式。

生4>我们把一个梯形分割成一个平行四边形和一个三角形进行推导,也能推出梯形面积公式。

师:刚才同学们用了不同的方法推导出梯形的面积公式,这说明同学们很会思考,其实推导梯形的面积公式还有其他方法,我们还可以在课后继续研究。

【设计意图】让学生动手操作在实验中不断发现问题,在同伴交流中拓展自己的思维,哦不满足于一种方法的公式推导。展示多种方法,开拓学生的思维,沟通多种方法之间的联系和区别。

三、联系实际、巩固运用

1.师:有了梯形面积计算公式,我们能不能计算这个梯形的面积?想办法计算出这个梯形的面积?

(学生白板工具栏中数学选直尺量出梯形的上底4.7厘米、下底13.5厘米、高8.5厘米,代入梯形面积计算公式计算出梯形的面积。)

2.师:梯形在我们日常生活中用途很广泛,这是我国最大的三峡水电站,

我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

【设计意图】本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。

四、课堂总结、畅谈收获。

本节课你学到了哪些知识?你有什么收获?(引导学生从知识和方法两方面进行总结)【设计意图】这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

板书设计:

梯形的面积

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2

五年级《梯形的面积》教案 15

教学内容:

练习十九第5~10题。

教学目的:

通过练习,使学生进一步熟悉梯形面积的计算公式,能够比较熟练地计算梯形的面积。

教具准备:

将下面复习中的图画在小黑板上。

教学过程:

一、复习。

1.口算:练习十九的第5题。

2.出示小黑板。

师:这是一个梯形图,要求它的面积必须知道什么?(学生回答后,让学生到黑板前量出要求这个图形的面积所需要的线段的长。知道了梯形的上底、下底和高,怎样求出它的面积?用哪个公式?(学生回答后,教师板书:

S=(a+b)×h÷2)

这个梯形的面积是多少?(学生独立计算)

二、做练习十九中的题目。

1.第7题,出示水渠模型,问:

这是什么模型?它的横截面是什么形?

渠口的宽可以看成是梯形的什么?渠底的宽呢?

渠深可以看成是梯形的什么?

(学生独立完成填表)

2.第8题,先让学生读题,教师说明:这是飞机模型中机翼的平面图。它是由两个完全相同的梯形组成,问:

现在要求这个机翼平面图的面积,应该怎样求?(先求出一个梯形的面积,再乘以2。)

看一看还有没有其他的算法?(教师提示:因为飞机机翼是由两个完全一样的梯形组成的,如果设想把这个机翼从中间剪开,成为两个完全一样的梯形,再把其中一个梯形经过平移,使两个梯形拼成一个平行四边形,它的底是100毫米加46毫米,高是250毫米。这个平行四边形的面积和我们所要求的机翼平面图的面积相等。)

3.第9题,让学生独立做,做完后集体核对。

4.学有余力的学生做第16题和17题。

第16题,先让学生弄清楚这道题已知什么,求什么,再引导学生用求未知数的方法求出梯形的高。

第17题,这一题是求梯形的面积,上底和下底都是已知的,高是未知的。

高能不能求出来呢?怎样求?

怎样利用涂色的三角形的条件求出梯形的高呢?

三、作业。

练习十九的第6题和第10题。

五年级《梯形的面积》教案 16

教学目标:

1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。

2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。

3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。

教学重点、难点和关键:

教学重点:梯形面积的计算公式。

教学难点:梯形面积计算公式的推导过程。

教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。

教具、学具准备:

教师准备多媒体课件、学生备用梯形硬纸片。

教学过程:

一、复习引入:

1、复习:

同学们会计算哪些图形的面积?

计算下列图形的面积:多媒体出示。

2、引入:

屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。

3、回忆旧知

我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)

我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)

二、探索解决问题办法,并尝试转化

1、引导学生提出解决问题方案

我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?

你准备用什么方法把梯形转化为我们学过的图形?

2、学生尝试转化

刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?

学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。

那么,用拼摆的方法呢,你准备怎样来拼?

学生上台演示。

3、学生操作、实施转化

学生以四人小组为单位,拼摆梯形。

请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?

谁来说一说,你是怎样拼的?多媒体课件演示。

三、观察图形,推导公式:

1、观察

同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?

它们的底、高和面积,大小怎样呢?小组讨论。

学生总结汇报后多媒体课件演示。

2、计算梯形面积

平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?

算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?

计算面积,学生口述,教师板书。

3、推导梯形面积公式

算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?

用字母表示梯形面积公式

阅读教材,加深理解

四、应用公式计算梯形面积

1、基本练习:

计算下面梯形面积

2、教学例题

出示例题并理解题意。

计算面积,一人板演,全班齐练。

3、判断题

4、抢答题

5、测量并计算

五、总结课堂

数学教案计算梯形的面积 17

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算”。(板书课题:梯形面积的计算)

(二)实验探究:

1.猜一猜:

① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一)基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

梯形的面积教学设计 18

[教学目标]

1、利用迁移规律,鼓励学生运用学具进行自主探究,推导出梯形的面积公式。

2、通过学生动手操作和观察、比较、分析、和概括,自主得出梯形的面积公式,发展学生的空间观念。

3、培养学生运用“转化”的思想解决问题的能力,培养学生团结协作、勇于创新的精神,使学生获得成功的体验。

[教学重点、难点]

通过学生发现梯形与已知图形的联系,自主探究梯形面积计算公式的推导过程。发现梯形与已知图形的联系,引导学生自主体验梯形面积计算公式的推导过程。

[教学准备]

一体机配合教学

[教学过程]

一、谈话导入,以旧引新

师:今天老师想带同学们到老师家里去看看,想去吗?这是老师家里小区的照片,漂亮吗?再来看看这是老师家里的照片,怎么样?

师:你们能从中找到我们学过的基本图形吗?

生:长方形,正方形,平行四边形,三角形和梯形。

师:你还记得这些平面图形的面积公式吗?

师:真不错,看来同学们对于学过的`知识掌握得非常扎实,现在只有这个梯形的面积不知道了,这节课我们就一起来研究一下梯形的面积。

二、迁移过渡,回顾方法

师:同学们,还记得平行四边形的面积和三角形的面积是怎么推导出来的吗?

师:先来说一说平行四边形。(学生汇报,教师操作)

五年级《梯形的面积》教案 19

教学目标

1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观。

梯形面积计算公式的推导

教学设计

梯形面积计算公式的推导

教学目标:

理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。 通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。

教具准备:

三个大小完全一样的梯形。

教学过程:

一、复习:

1.平行四边形的面积公式是什。

用含有字母的式子表示稍复杂数量关系和计算公式 用含有字母的式子表示稍复杂数量关系和计算公式 教学内容 苏教版国标本四年级数学(下册)第108-109页。

2.梯形的面积和周长公式

1、梯形的周长公式:上底+下底+腰+腰,用字母表示:

2、面积公式

①梯形的面积公式:(上底+下底)x高÷2, 用字母表示:

②梯形的面积公式: 中位线x高,用字母表示:L·h。

③对角线互相垂直的梯形面积为:对角线x对角线÷2。

梯形平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。等腰梯形是一种特殊的梯形,其判定方法与等腰三角形判定方法类似。

五年级《梯形的面积》教案 20

教学目标:

1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。

2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。

3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。

教学重点:

发现、理解和应用梯形面积计算公式。

教学难点:

理解公式的推导过程

教具准备:

计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。

学具准备

每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。

教学过程:

一、迁移诱导,激发参与兴趣

1、启发学生回忆三角形的面积推导公式。

2、板书课题,引入新课。

二、实验操作,引导参与探究

1、转化

学生分成四人小组进行学习。

独立拿出准备好的各种梯形,拼成学过的图形。

学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。

2、观察

学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。

板书如下:梯形面积 拼成的平行四边形面积的一半

平行四边形的底 梯形是上底+下底

平行四边形的高 梯形的高

3、推导

学生分组讨论,教师巡视,注意点拨。

学生反馈,教师注意用规范的语言进行调控。

板书如下:

平行四边形面积= 底 × 高

梯 形 的 面 积=(上底+下底)×高÷2

S=(a+b)×h÷2

提问:计算梯形的面积为什么除以2?

三、反馈调节,巩固参与成果

1、引导实际应用,巩固梯形面积公式

2、分层训练,培养能力

3、发展提高,深化知识

《梯形的面积》教案 21

梯形的面积教学片段设计——北师大版第九册第二单元

教学重点:学生运用“转化”的思想推导梯形面积公式

教学难点:运用不同方法推导出梯形的面积公式

教具准备:梯形学具(两个完全一样的直角梯形、等腰梯形、任意梯形)

电脑课件

教学过程:

一、设置情境 提出问题

1、师:(板书课题)我们学过的平行四边形、三角形的面积与它的底和高有关,你觉得今天研究的梯形的面积可能和它的什么有关系?

生:可能与它的上底,下底,高有关(师板书:上底,下底,高)

师:到底是不是这样,下面我们就一起来研究一下。回忆一下我们在研究三角形面积时是怎样推导的?

生: 将两个完全一样的三角形拼成平行四边形;也可以用割补的方法把三角形转化成我们以前学过的基本图形,如:正方形、长方形或平行四边形,再用面积公式计算推导出公式。

小结过渡:我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形,可以怎样转化呢?

二、小组合作,自主探索:

1、动手实践操作

师:下面我们就来实践操作一下吧,大家看见桌子上的袋子了吗?想不想知道里面装的是什么?

生:想!

师:各组打开看看吧!

生:是各种颜色的梯形。

师:哪组同学看出老师给你准备的梯形有什么特点?

生:各种梯形都有,而且每种梯形都是一模一样的两个,并且是同一个颜色。

师:我们先看看实践提纲吧。(课件出示实践提纲)

生:默读提纲,开始小组合作探究。

师:巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

2、课件直观演示

师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

生:将一个梯形旋转180度后再平移,拼成平行四边形。

师:那怎样求梯形的面积呢?

生:要先求平行四边形的面积——底×高,再除以2。

师:平行四边形的底和高图中标有吗?

生:平行四边形的底就是梯形的上底和下底的和,高就是梯形的高。(师用课件配合演示)

师:追问为什么要除以2?

生:因为我们用的是两个一模一样的梯形拼摆的,求一个梯形的面积就可以用平行四边形的面积除以二。(师用课件配合演示)

师:大家是这样拼的吗?下面谁来完成一下我们的实践提纲。(课件出示,生逐一汇报)

实践提纲:

(1)用两个完全一样的梯形可以拼成一个________________形。

(2)这个平行四边形的底等于____________________,高等于___________________.

(3)每个梯形的面积等于拼成的平行四边形面积的____________________.

(4)梯形的面积=____________________________.

总结:所以,梯形的面积公式我们就可以写成……(板书:梯形的面积=)谁到前面来将公式补充完整?(生补充板书)谁能用字母表示一下?(生板演)

《梯形的面积》教学片断评课稿

辽宁省盘锦市辽油迎宾小学 王辉

尊敬的各位领导,老师大家好!

下面我就孟老师执教的《梯形的面积》这一教学片断,从以下几个方面作以简单的评述。

一、从教学目标上看,本节课突出了一个“明”字,既知识和技能,数学能力,情感与态度。目标明确具体,关注了学生的全面发展,且在课堂教学中能紧紧围绕制定的目标展开教学,符合新课程标准中的教学理念。

二、从教学内容上看,本课抓住了一个“准”字,既教学重点,难点确立准确,教师在教材处理和教法选择上都突出了重点,使学生会运用“转化”的数学思想来推导梯形的面积公式,突破了难点,使学生会运用不同的方法来推导和验证梯形的面积公式。

三、从教学程序和教学思路上,本节课体现了一个“清”字,整个课堂教学结构设计严谨,环环相扣,过渡自然,时间分配合理,密度适中,效率高。设置情境,导入新课-------小组合作,自主探究-------发散拓展,验证结论。整个教学思路清晰。

本节课的教学中,孟老师注重渗透新课程理念,大胆开放自主探索空间,实现数学学习的“再创造”。具体体现在以下三个方面的课堂教学过程中:

(一)、创设情境,架起新知与旧知的桥梁。

《标准》指出:“数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握 基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。”根据这一理念,教者在新课导入时,教者借助知识的迁移引发学生的猜想:“梯形的面积与它的什么有关系?”同时教师又从学生已有的知识出发,向学生渗透数学转化思想,使新知识转化为旧知,新知、旧知有机的融为一体,学生把新知纳入已有的知识结构中去。不仅架起了新知与旧知的桥梁,拉近了数学与生活的距离,更让学生对数学产生了亲近感,激发了他们主动的探索欲望。

(二)、强化动手实践,拓宽探究空间。

《标准》指出:“学生的学习过程应是一个主动建构知识的过程,必须在学生认知发展水平和已有知识经验的基础上,为学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握数学知识,动手实践、自主探索与合作交流是学生学习数学的重要方式。”根据这一理念,老师在教学中注重为学生自主探究提供充分的素材、时间和空间。充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。

(三)、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

(四)、从教法和学法上看,本节课呈现了一个“活”字,教学方法的“活”,主要体现在“活动探究”“小组合作”“猜想验证”等多种教学方法,使学生在数学学习活动中,主动参与,自主探索,合作交流,引导学生体会数学知识间的内在联系,感受数学的整体性,不断积累解决问题的策略,培养学生的创新意识和实践能力。

学生学法的“活”主要体现在与教法相结合,在教师的指导下学生的学习积极性很高,兴趣浓,主动参与意识强,合作,讨论交流热烈。

(五)、从教学手段上看,运用现代信息技术,实现了学生的学习方式、教师的教学方式和师生互动方式的变革,实现了现代信息技术与学科课程的整合。

《课标》中指出,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐于并有更多的精力投入到现实的探索性的数学活动中去,本节课的设计充分发挥了多媒体课件的演示功能,把多媒体课件和学具有机结合,这不仅帮助学生清楚地理解、掌握用拼摆法,割补法推导梯形的面积公式,更重要的是向学生渗透数学的“转化”思想,拓展了学生的思维,极大地调动了学生参与的积极性,有效地突破了教学的重、难点,完成了本课的教学目标。

(六)、从教学效果上看,得到了一个“好”字。

即课堂教学效果高,学生思维活跃,人人主动参与,即面向全体学生,又注重个别差异,使不同的学生在教学上得到不同的发展。

综上所述,本课体现了学生是数学学习的主人,教师是数学学习的组织者,引导者与合作者,即以教师为主导,学生为主体的教学理念,体现了动手操作、合作交流、自主探究的探究性教学特点,培养了学生的创新意识和实践能力,圆满地完成了本节课的教学任务,

谢谢大家!

五年级《梯形的面积》教案 22

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入——新知讲授——巩固总结——练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

生:各种梯形,每种两个,每种梯形颜色一样。

教师提出要求

①选择自己喜欢的梯形把它拼成我们学过的图形

②想一想,拼成怎样的图形,利用怎样的方法拼成的?

③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

④先独立思考后小组交流

生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

师引导得出如下几种推导思路:(师边利用课件演示边讲解)

思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

五、巩固提升

1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

S =(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530(㎡)

2、计算下面图形的面积,你发现了什么?

六、总结结课

1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

2、我们是怎样得出梯形面积的公式的?

(二)教师总结

今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

小学五年级上册数学《梯形面积的计算》教案 23

教学内容:国标本苏教版小学数学五(上)p19例6,p20试一试、练一练教学目标:1、使学生经历“猜想、验证、发现”的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。2、培养学生观察、推理、归纳能力,体会转化思想的价值。3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。教学重点、难点:探索并掌握梯形的面积计算方法。教学准备:教师准备多媒体课件一套,学生剪下6个梯形。教学过程:一、认知准备:知识、策略,双管齐下谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是……(转化)出示梯形图,提问:这是什么图形? 关于梯形,你已经知道了些什么? 那么,关于梯形,你还想知道些什么?提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)组织班内交流,根据学生回答相机板书。( 板书: 梯形 转化成 旧图形 ?)[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,“迁移”是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼“转化”思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]二、探索公式:猜想、验证、发现1、动手操作,尝试转化提问:你们是怎么想到用“转化”的方法来寻找梯形的面积呢?师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)小组活动:挑选梯形尝试转化。交流,演示,多媒体出示拼成的三种情况。明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。2、讨论关系师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对“转化”思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(“剪移拼”和“转移拼”)和观察的经验(从底、高、面积三方面找关系)。因此,今天的“转化梯形”和“寻找关系”早已成了学生“跳一跳可以摘到的果子”!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]3、应用关系,体验方法在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?学生任选一个梯形独立求出它的面积。交流汇报:(6+10)×4÷2(3+7)×3÷2(3+6)×6÷2谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10)) 再乘上4呢?提问:我明白了,这里算的是拼成平行四边形的面积(板书) 那为什么还要除以2呀?4、想象延伸,发现方法出示独立的梯形(标有数据)提问:你能求出这个梯形的面积吗?学生在草稿本上写下算式。提问:(3+5)×4 算的是什么? 你能想象出拼成的平行四边形的样子吗?用手书空画一画。 为什么要除以2?归纳:现在你知道该怎样计算梯形的面积了吗?根据学生回答板书: 发现 (上底+下底)×高÷2[设计意图:一般的教学,在找出“拼成平行四边形和梯形的关系”后,就利用这3条关系通过适当的板书“顺理成章”地推导梯形的面积公式了。但事实是,这看似“顺理成章”的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了 “等量代换”的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉“晕晕乎乎”就得出了公式,对推理的过程仅停留在几句“顺口溜”的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了“计算”一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就“瓜熟蒂落”了。]5、回顾过程,感受策略师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:…… 三、应用公式:紧扣主线,不拘一格,技能与发散并重1、直接应用,熟练公式学生独立完成“练一练”第2题。2、活用公式,体会梯形公式的实质(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。(2)“练一练”第1题3、应用公式解决生活中的实际问题完成“试一试”。 四、全课总结师:今天你有什么收获? 五、拓展延伸介绍梯形通过剪拼转化成三角形的方法,如下图。[板书设计]梯形的面积猜想 梯形 转化成 旧图形 ?验证 任何两个完全一样的梯形都能拼成平行四边形 拼成平行四边形面积 ÷2 (6+10)×4 ÷2 (3+7)×3 ÷2 (3+6)×6 ÷2发现 (上底+下底)×高 ÷2