作为一名无私奉献的老师,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!读书是学习,摘抄是整理,写作是创造,下面是美丽的小编为大家收集整理的认识负数的教案(优秀8篇),仅供参考,希望可以帮助到有需要的朋友。
六年级数学《负数的认识》教案 篇一
认识负数
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的'时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1.练习一第2、3题
2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。
3.讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
第一课时教学反思
经过一学期“生本对话”课题研究,全班已基本形成课前自学的习惯。在此基础上,本学期提高了对预习的要求(不仅要完成课后“做一做”,而且要尝试提出有思考价值的数学问题),也想逐步改变教学方式,以学生的问题带动全课的教学推进。
今天,学生在例1环节只提出了教材中的一个问题“16℃和—16℃的意义相同吗”,并追问了“为什么”,再无其它疑问。对于“为什么”也回答得很清晰,看来生活积淀为负数的学习打好了坚实的基础。在此,我补充了认识温度计上的温度这一知识点。主要出于以下两点考虑:一是为第二课时数轴上表示正负数做准备;二是联系生活实际,提升学生的数学应用意识。我所绘制的温度计是以5℃为一个单位长度,在练习中发现部分学生读或指温度时有错误,主要是—16℃与—14℃易混淆。在此引导学生辨析,并教给他们方法。
在例2中学生质疑的问题明显增加。有(1)“正数、负数的意义是什么”;(2)“正数、负数的区别是什么”;(3)“为什么0既不是正数,也不是负数”;(4)“算式中的会有负数吗?如果有,它和减号如何区分?”其中前三个问题是本节课内容,后一个问题涉及到初中的代数知识。学生们答疑的水平较高。如第一问,回答问题的学生不是像教材那样用举例子的方式来描述正、负数的意义,而是用抽象概括的语言总结其含义。“大于0的数是正数,小于0的数是负数”,多棒呀,看来学生的能力不可小瞧!第三个问题是由我解释,从而帮助学生了解其原因。最后一个问题为帮助学生更好实现中小衔接,我也进行了补充介绍,提升他们的学习兴趣。
但学生的此次质疑还不够全面,主要表现在对读法较忽视。为此,我补充提问了“+”号可以省略吗?省略后怎样读?它还是正数吗?“—”号可以省略吗?为什么?怎样读?强调读法及正负数的表示方法。
最后,根据本班学情,我补充了下列练习,提升综合应用能力。下面记录的是3位学生的期末数学考试成绩。以他们的平均成绩为标准,把平均分记为0分,超过平均分记为正、不足的分数为负,在表格中用正、负数表示他们的分数。
单元:认识负数 篇二
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:负数的意义。
教学时间: 3课时
教学过程:
第一课时
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
教学后记
认识负数教案 篇三
教材分析
在学生认识了自然数、分数和小数的基础上认识正、负数,所以正、负数的认识是学生数概念的进一步拓展,也是学生学习有理数的启蒙阶段。
学情分析
之前的数概念学习,学生较多的是在具象意义上认数,分数虽然是在抽象意义上认数,但借助整体和部分关系,学生理解整体与部分关系用分数表示相对还比较容易把握,而正、负数的认识则属于更高的抽象意义上的认知,所以学生存在一定的学习困难。
教学目标
1、经历正、负数的产生过程,感受数范围不断形成和扩张的生成发展过程。
2、结合现实生活理解正、负数的意义,会用0表示参照标准,理解0既不是正数也不是负数;会用正、负数表示相反意义的量;掌握正、负数的读写法。
3、结合实际情境经历数轴的产生过程,在数轴上理解正数比0大、负数比0小。
教学重点
结合现实生活理解正、负数的意义,会用0表示参照标准,理解0既不是正数也不是负数;会用正、负数表示相反意义的量。
教学难点
理解0的含义。
教学方法
动手操作、小组合作学习
教学过程
设计思路
一、联系生活、激发兴趣
材料感知,聚类分析,发现生活中的参照标准及其相反意义的量。
这些都是具有相反意义的数量。以第①个为例,相对“始发站一个乘客也没有”为标准进行比较,相反意义的量是“上来8名”和“下去6名”。你能像这样说一说其它情境中都是相对什么标准来说的,两个数量有什么联系吗?
二、联系生活并用正、负数表示。
开始同学们阅读了一些相反意义的量,你能用“0”来表示参照标准,用正、负数来表示参照标准两端相反意义的量吗?
以前计数时0表示没有,测量时0表示起点,今天我们学习正负数中0又用来表示参照标准,0的作用真大啊。
珠穆朗玛峰高于海平面的海拔高度约为8844.43米,吐鲁番盆地低于海平面约155米,这里以海平面为基准,是不是也产生了相反意义的量?怎样用正、负数来表示?
暑假里绵阳的最高气温达到了38℃,和这么热的高温恰恰相反,珠穆朗玛峰峰顶的温度由于海拔高度的关系却只有-38℃,-38℃在-20℃的上面还是下面,比-20℃高还是低?
你还能列举出生活中用正、负数来表示的例子吗?举例时想一想我们可以把什么看作0,什么为正,什么为负?
小结:生活中凡是相对某一参照标准具有相反意义的量都可以用正、负数来表示。
三、正、负数的应用
1、结合班级中的正、负数生成数轴。
师:同学们找找,我们班级里有没有可以用正、负数表示的地方呢?
师:如果以“O”同学为参照标准,用0表示,约定右边为正,左边为负,那同学们的位置是不是也产生了正、负数?右边A同学的位置可以用什么数表示?左边B同学的位置呢?
小结:从0向右位置为+1,+2,+3的同学离0越来越远,表示的数就越来越大。相反,从0向左位置为-1,-2,-3的同学离0越来越远,表示的数就越来越小。
师:如果仍以“O”同学为参照标准,用0表示,约定向前为正,向后为负,那前边C同学的位置可以用什么数表示?后边D同学的位置呢?
师:我们再以“O”同学为参照标准,用0表示,约定斜前为正,斜后为负,E、F同学的位置用什么数表示?
小结:我们把刚才横行、竖列、斜行的同学们的位置分别看做一条直线,参照标准用0表示,也就是数轴的“原点”;规定向东、向北、向右、向前为正,也就是数轴的正方向,画上箭头;那么向西、向南、向左、向后就可以用负数来表示,每个人的位置都可以在直线上用正、负数表示,每两个同学间的距离一样,这个距离也就是数轴的单位长度。
师:比较一下,相对0而言,是-2更接近于0,还是+2更接近于0?
四、总结:
正数和负数在0的两侧,它们具有相反关系,这一特点也在生活中被广泛运用,同学们课后可以再去找一找,体会一下。
感受数学来源于生活,感受负数的意义。
体会负数表示相反意义的量。
从直观形象的温度计出发,帮助学生理解。
结合数轴、直观形象的理解负数的意义。
在总结中提升,加深对知识的理解和应用。
认识负数教案 篇四
教学目标:
1、结合具体情境,了解负数产生的过程、意义,对负数有初步的了解。
2、使学生会正确的读写负数。
3、能对生活中的负数产生兴趣。
教学重点:
认识负数。
教学难点:
理解负数的含义。
教学关键:
结合具体情境,说明相反意义的量。
教学过程如下:
一、创设情境,揭示课题。
1、 说以说对温度的认识。
① 可以结合天气预报。
② 说一说“零下××度”使什么意思,怎样表示呢?
2、 揭示课题:今天我们就来认识一位新朋友----负数。
二、探求新知:
1、 教学例1
① 实物投影呈现课文情景图,说一说从图上你看到了那些信息?你还想知道什么?
② 学生观察,自由汇报。
A、 教室内的温度是16℃。
B、 雪地上的温度是-16℃。
C、 “℃”表示什么?
D、 “16℃”和“-16℃”的意义有什么不同?
E、 “-”是什么符号?表示什么?
③ 针对上边的问题进行讨论、交流。
A在小组中说自己的想法和认识。
B全体汇报交流,认知结果。
C学生汇报的基础上,教师简要说明:“°”表示度,“℃”表示慑氏度,零下16℃用“-16℃”表示,“-”是负号,在这里表示比零度还低。16℃表示零上16℃。
2、 教学例2
① 出示银行存折数据,统一说出这些数各表示什么呢?
② 以“500”和“-500”为例,说明什么是相反意义的量。(500表示存入,-500表示支出)
3、 认识负数。
① 联系16℃和 -16℃,500和-500说一说体会。
② 什么是负数?
③ 教学负数的读写法。
④ 什么是正数?
⑤ 关于正数前的“+”可以省略的指导,强调负数的负号不能省略。
⑥ 关于“0”的认识(非正也非负)
⑦ 你能写出几个负数吗?组内订正。
⑧ 指导看书,画一画,记一记。(要看课后资料)
三、巩固提高:
1、 完成“做一做”
第一题,独立完成,组内订正。
第二题,介绍“海拔高度”再同桌完成。
2、 练习二第一题。
边度边想边填,组内订正。
3、 验收:练习二第2、3题,集体订正。
4、 思考:-2○3, 5○-5
四、
本节课你收获了什么?
板书设计:
负数
例1:16℃:读作:正十六摄氏度。
-16℃:读作:负十六摄氏度。
例2、500元:存入
-500元:支出
负数表示和正数相反意义的量。
“0”既不是正数,也不是负数。
认识负数 篇五
教学内容 例3例4练习一6~10
教学目标 1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
教学重点:用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学过程设计
一、复习导入
1、读一读,分一分。
+3000 +4200 -1800 +2700 -900 +3700
2、练习一6
二、教学新课
(一)教学例3
1、情境引入。
老师收集了新光服装店今年上半年每月的盈亏情况,如下表。
月 份 一 二 三 四 五 六
盈亏(元) +3000 +4200 -1800 +2700 -900 +3700
2、教学用正数与负数表示盈亏情况的具体意义。
通常情况下,盈利用正数表示,亏损用负数表示。
(1)表中哪几个月盈利?哪几个月亏损?
(2)从表中你还能知道些什么?
在小组里互相说一说,再汇报。
3、试一试
(1)根据题中数据独立完成。注意正确读写正、负数的指导。
(2)完成后介绍一下服装店七至十二月份盈亏情况。
(二)教学例4
1、出示情境图。
从平面图上你能知道些什么?
2、教学用正数和负数区别表示相反方向运动的路程。
(1)小华从学校出发,沿东西方向的大街走了2100米,可能会到什么地方?
小华如果向东走2100米,到达邮局;
小华如果向西走2100米,到达公园。
(2)如果把向东走2100米记作+2100米,那么向西走2100米可以记作什么?
(3)可以把向西走2100米记作+2100米吗?那么向东走2100米记作什么?
3、表示南北方向运动的路程
如果从学校出发,沿南北方向的大街走1240米可以走到哪里?根据行走的方向和路程,
分别写出一个正数和一个负数。
在小组里说说你的想法,分组汇报。
4、试一试:
分步出示数轴:
(1)画出直线后,标出表示0的地方;
(2)向右等距离标出1、2等点,向左等距离地标出-1、-2等点;
(3)学生填出空格中的数;
(4)从0开始,分别向右、向左按顺序读一读各数;
(5)-2接近2,还是接近0?
说一说你是怎样想的?
(6)正数和负数在数轴上的排列方向是怎样的?
5、练一练
1、练一练第1题。
正数和负数分别表示什么?
你能说一说小明家各项收入和支出的情况吗?
学生回答及说出想法。
2、练一练第2题。
学生独立完成第2题,再说说自己是怎么想的?
四、巩固练习。
1、练习一第7题。
独立完成填空,再说说想法。
你还能举出生活中用到正数、负数的例子吗?
2、练习一第8题。
从存折这一页的记录中你获得了哪些信息?
你能说说存折中红线框处的数各表示什么吗?
学生独立完成填空,完成后汇报,集体讲评。
3、练习一第10题。
在这张表中的正数表示什么?负数表示什么?
再说说每站的上下车人数。
这里的0表示什么?
4、阅读:你知道吗?
五、全课总结
通过本节课的学习,你获得了哪些知识?
六、布置作业
练习一 第9题。
单元:认识负数 篇六
教学内容:
1、认识负数:教材第1 — 6页 例1 — 例4以及练习一
2、实践活动:面积是多少 第10 — 11页
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
第一课时:认识负数(一)
教学内容:
苏教版五年级数学下册 第一单元 p1—3 练习一 1—5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
教学重点:在现实情景中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:多媒体课件
学具准备:一张联系纸、一个信封、温度计
教学过程
课前游戏
老师说一句话,学生说相反的话。
一、 教学例1
1、情境引入。
电脑播放天气预报片头
师:老师收集了某天四个城市的最低温度资料,并用温度计显示。
2、教学用正负数和0表示几个城市某一天的最低气温。
出示图片:香港19摄氏度
师:那一天香港的最低气温是多少度?
师:你是怎么看出来的?
老师介绍温度计的看法。
出示图片:上海3摄氏度
师:上海的气温是多少摄氏度?
出示图片:南京0摄氏度
师:南京呢?和上海比,南京的气温怎样?
出示图片:北京零下3摄氏度
师:和上海比,北京的气温怎么样?
同时出示上海、南京、北京三地的气温图片。
师:上海和北京的气温一样吗?
师:在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?
3、介绍正负数的读写法。
师:规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。
教学正数和负数的读写法
师:“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。“-3”读作负三,书写时,只要先写“-”——负号,再写3。(教师板书)
师:现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃
4、练一练
(1)选择合适的数表示各地的气温
师:你还会用这样的方法来记录温度吗?
师:看屏幕上的温度计,选择适当的卡片举起来。
(卡片上分别写有+12℃、-12℃、30℃、+30℃、-30℃)
哈尔滨:零下12摄氏度,漠河:零下30摄氏度,海口:零上30摄氏度
对于海口学生有两种不同的选择:+30℃和30℃
师:对于这两种选择你有什么看法?
(2)小小气象记录员
师:我们一起来当气象记录员,一边听天气预报,一边记录气温。
课件演示:赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度
二、 感知生活中的正数和负数。
1、认识海拔高度的表示方法
师:从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。
出示教科书上的“你知道吗”
师:新疆吐鲁番是我国还把最低的地区,你知道它的海拔高度是多少?
出示海拔高度图
师:从图中你知道了什么?
师:以海平面为标准,珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。
师:你能用今天学的知识表示这两个地方的海拔高度吗?
小结:用正负数还可以区分海平面以上的高度和海平面以下的高度。
2、练一练
(1)用正数或者负数表示下面各地的海拔高度。(出示海拔高度图)
中国最大的咸水湖——青海湖的海拔高度高于海平面3193千米。
世界最低最咸的湖——死海低于海平面400米。
世界海拔高度最低的国家——马尔代夫比海平面高1米。
(2)说说下面的海拔高度是高于海平面还是低于海平面?
里海是世界上最大的湖,水面的海拔高度是-28米。
太平洋的马里亚纳海沟是世界上最深的海沟,最深处海拔-11034米
三、描述正数和负数的意义
出示:+3,-3,40,-12,-400,-155,+8848
师:你能将这些数分分类吗?按什么分?分成几类?小组讨论。
师:象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。
师:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。
师:0是正数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。
练一练
1、先读一读,再把数填入适当的框内。
-5,+26,9,-40,-120,+203
正数 负数
2、每人写出5个正数和5个负数。
读出所写的数,并判断写的是否正确。
3、出示“你知道吗?——中国是最早使用负数的国家”
小结:今天这节课,你有哪些收获?
四、寻找生活中的正数和负数。
师:在生活中,在哪里见到过负数?
学生说出存折,电梯面板等等,并要求说明这些负数的意思
练习一 4
选择合适的温度连一连
冰箱中的鱼 水中的鱼 烧好的鱼
10℃ 70℃ -10℃
练习一5
你知道下面的温度吗?
水沸腾的温度 ( )℃
水结冰的温度 ( )℃
月球表面的温度 ( )℃
出示:+8,-5
结合今天学习的内容,说说这两个数表示的意思吗?
全课总结:
师:(电脑出示有关图片)像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示。课后请同学们搜集有关负数在生活中应用的资料,下节课来交流。
[课后札记]
认识负数教案 篇七
教学内容:
苏教版国标本五年级上册《认识负数》第一课时
教学目标:
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
教学过程:
一、创设情境,激趣引入
(多媒体出示沈阳大雪时的一幅照片)
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)
二、借助经验,自主探究
1、 认识温度计
师:在日常生活中,人们往往借助温度计来测量温度。(多媒体出示温度计图)你了解温度计吗?把你了解的情况和大家交流一下,好吗?
评:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)
师:(多媒体依次出示读数为零下22℃、零下18℃的温度计图)这时的温度又是多少呢?你能说说是怎样看出来的吗?
[评:认识温度计是本环节的教学要点,而正确地读出温度计所示的零下温度又是本节课的教学难点。通过零下20℃、零下22℃、零下18℃的对比练习,既突出教学要点,又能有效地突破教学难点。]
2、教学例1。
(1)教学正、负数读写法
谈话:同学们,咱们幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流。)
师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。
讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度; +20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示
(板书):-9℃、27℃]
[评:通过练一练,既可以使学生更为准确、熟练地掌握零上温度和零下温度的表示方法,又为引入例2起到过渡作用。]
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)
(4)练一练。
(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?
黑海海拔高度是-28米。
马里亚纳海沟最深处的海拔是-11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)
三、抽象概括,沟通联系。
1、揭示概念。
师(指板书):这里有许多数量,如果把它们的单位名称去掉,就得到一个个的数。你能把这些数分分类吗?
师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?
像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)
0与负数比、0与正数比,大小有什么关系?(指名回答)
[评:揭示正负数时,让学生经历 “具体——抽象(由具体数量抽象出数)”的过程,符合儿童认知规律;让学生列举正、负数,可以初步感知正数的个数和负数的个数都是无限的。]
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)
2、你知道这些温度吗?读一读。(教科书练习一第五题)
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)
4、小明的一则。
7月18日 晴
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8~9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……
这则中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
[评:以的形式展示数学内容,既贴近生活、新颖有趣,又有利于联系实际、培养数感。]
五、全课。
师:这节课我们一起认识了负数。你有哪些收获,分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
总评:
课程标准提出:
人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:
简约。
紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。
贴切。
数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。
课始。
老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。
充实。
数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。
和谐。
关注学生学习过程。老师注意给学生广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、 “你能说说是怎样看出来的吗?”、“ 你能用自己喜欢的方式表示吗?”、“你有哪些收获,分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅 。
认识负数教案 篇八
一、游戏导入
1、游戏:
我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。
游戏规则:
老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:
通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:
通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:
珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:
以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。