作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?以下是勤劳的小编给家人们收集的《有理数的加法》教案【优秀10篇】。
有理数的加法教案 篇一
1.教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。
另一方面,课本知识的传授是符合学生的认知发展特点的。在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。
1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。
能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。
情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。
1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。
2.重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。
2.2教学难点:异号两数加法的实际意义及法则的归纳。
3.教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。
在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。
4.教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。
说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。
4.2体验进程,让学生的思维“活”起来
“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。
[开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。
教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。
预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。 ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。
处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。
教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。
4.3探究规律,让学生的思维“跳”起来
用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。
预先设想学生思路,可能从以下方面分类归纳,探索规律:
①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)
②从加数的不同数值情况(加数为整数;加数为小数)
③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)
④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)
⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)
教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。
有理数的加法公开课教案 篇二
教学目标:
1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。
2、培养学生观察、比较、归纳及运算能力。
重点:有理数加法运算律及其运用。
重点:灵活运用运算律
教学过程:
一、创设情境,引入新课
1、小学时已学过的加法运算律有哪几条?
2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、讲授新课
教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?
(学生回答省略)
师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
讲解例3
教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)
三、巩固知识
教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?
师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。
四、总结
本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。
五、布置作业
有理数的加法教案 篇三
教学目标:
1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:
法则的探索与应用
教学难点:
异号两数相加
教学准备:
、预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:
一、复习回顾
1、一个不为零的有理数可以看做是由哪两部分组成的?
2、比较下列各组数绝对值哪个大?
①-22与30;
②-4.5和6
3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?
二、新知探究
1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?
3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?
4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)
三、运用法则
例:计算
(1)(+2)+(-11)
(2)(-12)+(+12)
(3)(+20)+(+12)
(4)(- )+(- )
(5)(-3.4)+(+4.3)
(6)(-5.9)+0
四、巩固法则
1、开火车游戏。
第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。
2、填数游戏。
将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0
3、思考:两个有理数相加,和一定大于每一个加数吗?
(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)
五、小结。
反思:
“运算能力”是修订后的课程标准提出的“十大核心概念”之一,而“有理数加法”是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础,有理数加法法则是有理数加法运算的准绳,更是难倒了一大片初学者,有的同学学习了有理数的加法法则不但不能叙述法则,反倒连小学学过的非负数的加法运算也不会了,如何突破这个障碍,我认为关键还是加法意义的理解,应让学生置身于现实情境中搞清楚加法究竟是怎么回事,这样一来“和”的符号的确定与“和”的绝对值的确定也就是顺理成章的事儿了。
对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,熟知加法就是连续两次变化的总结果,然后再给这些算式赋予新的实际意义更利于理解加法的意义。其实,只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些,通过操作,学生对于将算式置于实际情景非常感兴趣。对于接下来将算式按加数分类,探究和的符号与加数符号的关系,还有和的绝对值与加数绝对值的关系都有着浓厚的兴趣,尤其是得到“互为相反的两数相加和为零”时就有学生提到:异号两数相加其实就是正负一抵消,余下的部分就是和。看来只要在课堂上通过适当的引导让学生自身释放出琢磨的能量比让学生打开大脑的录音系统录音要好得多。通过后续学习的考察,学生对于加法法则的记忆与应用并非停留在表面的记忆上,而是对法则有了更深层次的理解,也没有学生刻意追求用教材上的句子一字不漏地来叙述加法法则,他们都能用自己理解的语言来说明到底是为什么。
再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(-5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(-10)为什么结果取“-”且用“10-3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。
《有理数的加法》教案 篇四
教学目的:
经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:
有理数的加法法则
教学难点:
异号两数相加的法则
教学教程:
一、复习提问:
1、如果向东走5米记作+5米,那么向
西走3米记作__。
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1)向东走5米,再向东走3米,一共向东走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向东走了多少米?
-5-3(-3)+(-5)=-8
(3)先向东走5米,再向西走3米,两次一共向东走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向东走3米,两次一共向东走了多少米?
-5+3(-5)+(+3)=-2
下面再看两种特殊情况:
(5)向东走5米,再向西走5米,两次一共向东走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
-5(-5)+0=-5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+8
(-5)+(-3)=-8
异号两数相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零
3、一个数与零相加,仍得这个数
例如:
(-4)+(-5)(同号两数相加)
解:=-()(取相同的符号)
=-9(并把绝对值相加)
(-2)+(+6)(绝对值不等的异号两数相加)
解:=+()(取绝对值较大的符号)
=+4(用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“”号填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b|b|,那么a+b0;
(4)如果a0,|a|>|b|,那么a+b0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
第40页1、2
《有理数的加法》教案 篇五
教学目标:
1、知识与技能
掌握加法法则,体会加法法则的意义。
2、过程与方法
通过经历有理数加法运算的发生过程,体验数的运算探索过程,感悟有理数加法运算的技巧及运算规律。
通过运算归纳出技巧,感悟绝对值不相等的异号两数相加的技巧,突破本节内容中的难点问题。
3、情感、态度与价值观:
养成积极探索、不断追求真知的品格。
教学重点和难点:
重点:有理数加法法则;
难点:异号两数相加的法则。
教学安排:
第1课时。
教学过程:
一、师生共同研究有理数加法法则
我们已经熟悉正数的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。掌前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4+(-2),黄队的净胜球数为1+(-1)。
这里用到正数与负数的加法。学生考虑一下,怎么计算 4+(-2)?
师:下面我们可以借助数轴来讨论有理数的加法。
一个物体作左右方向运动,我们规定向左为负,向右为正。
① 两次运动后物体从起点向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
有理数的加法教案 篇六
今天我说课的题目是“有理数的加法(一)”,“有理数的加法”说课教案、课堂设计及教后反思。本节课选自华东师范大学出版社出版的《义务教育课程标准实验教科书》七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
课堂设计及课后反思
我9月19号在阿城市第五中学上了一堂数学公开课,由于得到通知的时间比较仓促,所以准备的不算充分。在各个方面一定存在着疏漏和缺陷,在这里请大家多多指教。我主要从以下几个方面加以说明。
一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。
二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。
三、习题的配备:整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。
四、总之在整个教学过程的实施中,出现了一些问题,也有一些不尽人意的地方。希望大家批评指正。
《有理数的加法》教案 篇七
教学目标:
1.知识与技能
掌握加法法则,体会加法法则的意义。
2.过程与方法
通过经历有理数加法运算的发生过程,体验数的运算探索过程,感悟有理数加法运算的技巧及运算规律。
通过运算归纳出技巧,感悟绝对值不相等的异号两数相加的。技巧,突破本节内容中的难点问题。
3.情感、态度与价值观:
养成积极探索、不断追求真知的品格。
教学重点和难点:
重点:有理数加法法则;
难点:异号两数相加的法则。
教学安排:
第1课时。
教学过程:
一、师生共同研究有理数加法法则
我们已经熟悉正数的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。掌前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4+(-2),黄队的净胜球数为1+(-1)。
这里用到正数与负数的加法。学生考虑一下,怎么计算 4+(-2)?
师:下面我们可以借助数轴来讨论有理数的加法。
一个物体作左右方向运动,我们规定向左为负,向右为正。
① 两次运动后物体从起点向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
有理数的加法教案 篇八
教学目标
1、在现实背景中理解有理数加法的意义。
2、经历探索有理数加法法则的过程,理解有理数的加法法则。
3、能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。
4、能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。
5、在教学中适当渗透分类讨论思想。
教学难点
异号两数相加
知识重点
和的符号的确定
教学过程
(师生活动)设计理念
设置情境
引入课题回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。
(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。
分析问题
1、探究新知如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该
怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。
2、借助数轴来讨论有理数的加法。
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则。
有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3、一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。
①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。
②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。
③让学生感受“数学模型”的思想。
④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律解决问题解决问题。
小结与作业
课堂小结通过这节课的学习,你有哪些收获,学生自己总结。
本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。
2、注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。
3、注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听
《有理数的加法》教案 篇九
【教学目标】
1.进一步理解有理数加法的实际意义;
2.经历探索有理数加法法则的过程,理解有理数加法法则;
3.感受数学模型的思想;
4.养成认真计算的习惯。
【对话探索设计】
〖探索1
1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?
2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
3.一个物体作左右方向的运动,规定向右为正。如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?
假设原点为运动起点,用数轴检验你的答案。
〖法则理解
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.
这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
(2)两个负数相加,取_____号,并把______相加。例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得。
〖练习
1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃, 下午5时的气温是多少?
2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?
3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?
4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200) =
(3)(-188)+(-309)=
〖探索2
1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?
2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?
3.正数和负数相加,结果是正数还是负数?
〖法则理解
有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的'符号,并用_______________减去_________________.
例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到。
又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大。然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.
〖议一议
有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算。他说的对不对?
〖练习
1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?
2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?
3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:
-3.5,+1.2,-2.7.
这3包洗衣粉的重量一共超过标准重量多少?
4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
〖法则理解
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.
例如(+3)+(-3) = ______,(-108)+(+108) = ______.
〖例题学习
P21.例1,例2
P22.练习2(按例1格式算。)
〖作业
P29.习题 1, P32.习题 8,9,10
【备选素材】
用一个□表示+1,用一个■表示-1.显然□+■=0,
(1)■■+□□□=(■+□)+(■+□)+ □=_____.
这表明-2+3=+(3-2)=1.
想一想:答案为什么是正的?为什么转化为减法运算?
(2)计算■■■■■+□□□□□=_____.
(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.
这说明-5+(+2)=-(___-___)=_______.
(4)计算■■■+□□□□□=?
有理数的加法教案 篇十
学习目标:
1、理解有理数加法意义
2、掌握有 理数加法法则,会正确进行有理数加法运算
3、经历探究有理数有理数加法法则过程,学会与他人交流合作
学习重点:
和 的符号的确定
学习难点:
异号两数相加的法则
学法指导:
在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程
(一)课前学习导引:
1、 如果向东走5米记作+5米,那么向西走3米记作
2、 比较 大小:2 -3,-5 - 7,4
3、 已知a=-5,b=+ 3, 则︱a ︳+︱ b︱=
(二)课堂学习导引
正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是
(1)红队的净胜球数为 4+(-2) ,
(2)蓝队的净胜球数为 1+(-1) 。
这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?
现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示
①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为
②先向西走了5米,再向西走了3米,结果如何?可以表示为:
③先向东走了5米,再向西走了3米,结果呢?可以表示为:
④先向西走了5米,再向东走了3米,结果呢?可以表示为:
⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:
⑥先向西走5米,再向东走5米,结果呢?可以表示为:
从以上几个算式中总结有理数加法法则:
(1)、同号的两数相加,取 的符号,并把 相加。
(2)。绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值。 互为相反数的 两个数相加得 。
(3)、一个数同0相加,仍得 。
例1 计算(能完成吗,先自己动动手吧!)
(-3)+( -9) (2)(-4.7)+3.9
例2 足球循环赛中,
红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。
三场比赛中,
红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;
黄队共进2球,失4球,净胜球数为(+2)+(4)= (4
蓝队共进( )球,失( )球, 净胜球数为 = 。
(三)课堂检测导引:
(1)(-3)+(-5)= ;
(2)3+(-5)= ;
(3)5+(-3)= ;
(4)7+(-7)= ;
(5)8+(-1)= ;
(6)(-8)+1 = ;
(7)(-6)+0 = ;
(8)0+(-2) = ;
(四)课堂学习小结
1、本节课中你学到了什么知识?
2、你觉得有理数加法比较难掌握的是哪里?