1. 主页 > 范文大全 >

勾股定理练习题(优秀5篇)6-3-32

以下是爱岗敬业的小编给大伙儿找到的勾股定理练习题(优秀5篇),希望对大家有所启发。

初中勾股定理练习题 篇一

勾股定理练习题(优秀5篇)6-3-32

1.13;直角三角形 2. 3.直角;6 4.8.4 5.直角三角形;勾股定理的逆定理 6.184 cm2

7.D 8.D 9.D 10.B

11.周长为48,面积为84. 提示:根据勾股定理的逆定理可知 为直角三角形,故AD BC,再根据勾股定理可得BD=6,从而可求解。

12. 为等腰三角形。

理由:在 中,AB=17cm,AD=8 cm,BD=15 cm,

AB2=AD2+BD2

为直角三角形。

在 中,AC2=AD2+CD2=82+152=172cm2

AC=17 cm,

为等腰三角形。

13.符合。

14.连接AC,得 ,由勾股定理知AC=5,

AC2+CD2=52+122=169=132=AD2, ACD=S四边形ABCD=S ABC+S ACD== 6+30=36.

15.詹克21岁,凯丽20岁,现在共有11个子女。

16.如图,由题意知AB=3 m,CD=14-l=13 m,BD=24 m.过A作AE CD于E,则CE=13-3=10 m,AE=BD=24 m.在中,AC2=CE2+AF=102+242=262 m2, AC=26 m, 265=5.2 s, 它至少需要5.2 s才能赶回巢中。

17.(1)①每个等式中的三个底数都正好组成一组勾股数;

②每个等式中的最小的底数恰好是连续的奇数;

③最大的底数比第二大的底数大1;

④第二大的底数是偶数,最大的底数是奇数;

⑤这些等式中的底数都是代数式m2-n2,2mn,m2+n2,当m和n取不同正整数时得到的数。

(2)第五个式子应当是m=6,n=5时,所得的三个底数的平方和,即112+602=612.

18.(1)(48,14,50).

(2)设n2,且n为整数,勾股数组的规律为 (n2-l,n2,n2+1).

(3) (n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,

以n2-1,2n,n2+l为三边长的三角形为直角三角形。

勾股定理单元测试练习题 篇二

勾股定理单元测试练习题

1、下列各组数中,能构成直角三角形的是

A:4,5,6B:1,1,C:6,8,11D:5,12,23

2、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为()

A:26B:18C:20D:21

3.将直角三角形的。各边都缩小或扩大同样的倍数后,得到的三角形()

A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形

4、△ABC中,∠A、∠B、∠C的对边分别是a、b、c,AB=8,BC=15,CA=17,则下列结论不正确的是()

A:△ABC是直角三角形,且AC为斜边B:△ABC是直角三角形,且∠ABC=90°

C:△ABC的面积是60D:△ABC是直角三角形,且∠A=60°

勾股定理练习题 篇三

勾股定理练习题

勾股定理练习题

一、你能填对吗

1. 的两边分别为5,12,另边c为奇数,且a + b + c是3的倍数,则c应为_________,此三角形为________.

2.三角形中两条较短的边为a + b,a - b(ab),则当第三条边为_______时,此三角形为直角三角形。

3.若 的三边a,b,c满足a2+b2+c2+50=6a+8b+l0c,则此三角形是_______三角形,面积为______.

4.已知在 中,BC=6,BC边上的高为7,若AC=5,则AC边上的高为 _________.

5.已知一个三角形的三边分别为3k,4k,5k(k为自然数),则这个三角形为______,理由是_______.

6.一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为_________。

二、选一选

7.给出下列几组数:①;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m0).其中定能组成直角三角形三边长的是( ).

A.①②

B.③④

C.①③④

D.④

8.下列各组数能构成直角三角形三边长的是( ).

A.1,2,3

B.4,5,6

C.12,13,14

D.9,40,41

9.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).

A.8个

B.10个

C.11个

D.12个

10.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是( );

A.锐角三角形

B.直角三角形

C.钝角三角形

D.等腰三角形

三、解答题

11.如图18-2-5,在 中,D为BC上的`一点,若AC=l7,AD=8,CD=15,AB=10,求 的周长和面积。

12.已知 中,AB=17 cm,BC=30 cm,BC上的中线AD=8 cm,请你判断 的形状,并说明理由 .

13.一种机器零件的形状如图18-2-6,规定这个零件中的 A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图(单位:mm),这个零件符合要求吗?

14.如图18-2-7,四边形ABCD中, ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

15.为了庆祝红宝石婚纪念日,詹克和凯丽千家举行聚会。詹克忽然发现他的年龄的平方与凯丽年龄的平方的差,正好等于他的子女数目的平方,已知詹克比凯丽大一岁,现在他们都不到70岁。请问,当年结婚时,两个人各是多少岁?现在共有子女几人?(在西方,结婚40周年被称为红宝石婚,且该国的合法结婚年龄为16岁)

16.有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去。如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。

四、思维拓展

17.给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,

(1)你能发现关于上述式子的一些规律吗?

(2)请你运用规律,或者通过试验的方法(利用计算器),给出第五个式子。

18.我们知道,以3,4,5为边长的三角形为直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等。

(1)请你根据上述四组勾股数的规律,写出第六组勾股数;

(2)试用数学等式描述上述勾股数组的规律;

(3)请证明你所发现的规律。

五、中考热身

19.(福州市)如图18-2-8,校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______m.

勾股定理逆定理练习题精选答案

1.13;直角三角形 2. 3.直角;6 4.8.4 5.直角三角形;勾股定理的逆定理 6.184 cm2

7.D 8.D 9.D 10.B

11.周长为48,面积为84. 提示:根据勾股定理的逆定理可知 为直角三角形,故AD BC,再根据勾股定理可得BD=6,从而可求解。

12. 为等腰三角形。

理由:在 中,AB=17cm,AD=8 cm,BD=15 cm,

AB2=AD2+BD2

为直角三角形。

在 中,AC2=AD2+CD2=82+152=172cm2

AC=17 cm,

为等腰三角形。

13.符合。

14.连接AC,得 ,由勾股定理知AC=5,

AC2+CD2=52+122=169=132=AD2, ACD=S四边形ABCD=S ABC+S ACD== 6+30=36.

15.詹克21岁,凯丽20岁,现在共有11个子女。

16.如图,由题意知AB=3 m,CD=14-l=13 m,BD=24 m.过A作AE CD于E,则CE=13-3=10 m,AE=BD=24 m.在中,AC2=CE2+AF=102+242=262 m2, AC=26 m, 265=5.2 s, 它至少需要5.2 s才能赶回巢中。

17.(1)①每个等式中的三个底数都正好组成一组勾股数;

②每个等式中的最小的底数恰好是连续的奇数;

③最大的底数比第二大的底数大1;

④第二大的底数是偶数,最大的底数是奇数;

⑤这些等式中的底数都是代数式m2-n2,2mn,m2+n2,当m和n取不同正整数时得到的数。

(2)第五个式子应当是m=6,n=5时,所得的三个底数的平方和,即112+602=612.

18.(1)(48,14,50).

(2)设n2,且n为整数,勾股数组的规律为 (n2-l,n2,n2+1).

(3) (n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,

以n2-1,2n,n2+l为三边长的三角形为直角三角形。

勾股定理练习题及答案 篇四

1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________

2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.

3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要         __________元.

4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′(    ).

A.小于1m   B.大于1m   C.等于1m  D.小于或等于1m

5、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是(  ).

A.h≤17cm             B.h≥8cm

C.15cm≤h≤16cm      D.7cm≤h≤16cm

6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1。4m,BC=30米,请帮助小明计算出树高AB.( 取1。732,结果保留三个有效数字)

◆典例分析

如图1,一个梯子AB长2。5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1。5m,梯子滑动后停在DE的位置上,如图2,测得BD长为0。5m,求梯子顶端A下落了多少米.

解法指导:直角三角形中,已知一直角边和斜边是勾股定理的重要应用之一.勾股定理:a2+b2=c2的各种变式:a2=c2-b2,b2=c2-a2.应牢固掌握,灵活应用.

分析:先利用勾股定理求出AC与CE的长,则梯子顶端A下落的距离为AE=AC-CF.

解:在Rt△ABC中,AB2=AC2+BC2

∴2.52=AC2+1。52,∴AC=2(m).

在Rt△EDC中,DE2=CE2+CD2,∴2.52=CE2+22

∴CE2=2.25,∴CE=1.5(m),

∴AE=AC-CE=2-1.5=0.5(m)

答:梯子顶端A下落了0。5m.

课下作业

拓展提高

1。 小明想测量教学楼的高度.他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了2 m,当他把绳子的。下端拉开6 m后,发现绳子下端刚好接触地面,则教学楼的高为(      )。

A。 8 m     B。 10 m     C。 12 m     D。 14 m

2。如果梯子的底端离建筑物9 m,那么15 m长的梯子可以到达建筑物的高度是(      )。

A。 10 m    B。 11 m     C。 12 m     D。 13 m

3。 直角三角形三边的长分别为3、4、x,则x可能取的值有(      )。

A。 1个     B。 2 个     C。 3个      D。 无数多个

4、直角三角形中,以直角边为边长的两个正方形的面积为7cm2,8 cm2,则以斜边为边长的正方形的面积为_________ cm2.

5、如图,矩形零件上两孔中心A、B的距离是多少(精确到个位)?

体验中考

1、(安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了多少?

2。(20湖北十堰)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据: ≈1.414, ≈1.732)

答案:

1、8π提示:在Rt△ABC中,AB2=AC2-BC2=172-152=82,∴AB=8.∴S半圆= πR2= π×( )2=8π.

2、12或7+   提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或 ,所以直角三角形的周长为3+4+5=12或3+4+ =7+ 。

3、150a.

4、A提示:移动前后梯子的长度不变,即Rt△AOB和Rt△A′OB′的斜边相等.由勾股定理,得32+B′O2=22+72,B′O= ,6<B′O<7,则O<BB′<1.

5、D提示:筷子在杯中的最大长度为 =17cm,最短长度为8cm,则筷子露在杯子外面的长度为24-17≤h≤24-8,即7cm≤h≤16cm。

6、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D作DE⊥AB于点E,则ED=BC=30米,EB=DC=1。4米.设AE=x米,在Rt△ADE中,∠ADE=30°,则AD=2x.由勾股定理得:AE2+ED2=AD2,即x2+302=(2x)2,解得x=10 ≈17。32.∴AB=AE+EB≈17。32+1。4≈18。7(米).

答:树高AB约为18。7米.

拓展提高

1。A   解:设教学楼的高为x,根据题意得: ,解方程得:x=8。

2。C  解:设建筑物的高度为x,根据题意得: ,解方程得:x=12。

3。B    斜边可以为4或x,故两个答案。

4。15   根据勾股定理可知:以斜边为边长的正方形的面积是以直角边为边长的两个正方形的面积和。

5.43(提示:做矩形两边的垂线,构造Rt△ABC,利用勾股定理,AB2=AC2+BC2=192+392=1882,AB≈43);

●体验中考

1。 ,利用勾股定理即可。

2。94.6。

分析:直角三角形的有关计算、测量问题、勾股定理

解:由题意可知:∠ACP= ∠BCP= 90°,∠APC=30°,∠BPC=45°

在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,

在Rt△ACP中,∵∠ACP=90°,∠APC=30°,

∴≈60+20×1.732 =94.64≈94.6(米)

答:教学楼A与办公楼B之间的距离大约为94.6米.

初中勾股定理练习题 篇五

一、你能填对吗

1. 的两边分别为5,12,另边c为奇数,且a + b + c是3的倍数,则c应为_________,此三角形为________.

2.三角形中两条较短的边为a + b,a - b(ab),则当第三条边为_______时,此三角形为直角三角形。

3.若 的三边a,b,c满足a2+b2+c2+50=6a+8b+l0c,则此三角形是_______三角形,面积为______.

4.已知在 中,BC=6,BC边上的高为7,若AC=5,则AC边上的高为 _________.

5.已知一个三角形的三边分别为3k,4k,5k(k为自然数),则这个三角形为______,理由是_______.

6.一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为_________。

二、选一选

7.给出下列几组数:①;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m0).其中定能组成直角三角形三边长的是( ).

A.①②

B.③④

C.①③④

D.④

8.下列各组数能构成直角三角形三边长的是( ).

A.1,2,3

B.4,5,6

C.12,13,14

D.9,40,41

9.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).

A.8个

B.10个

C.11个

D.12个

10.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是( );

A.锐角三角形

B.直角三角形

C.钝角三角形

D.等腰三角形

三、解答题

11.如图18-2-5,在 中,D为BC上的一点,若AC=l7,AD=8,CD=15,AB=10,求 的周长和面积。

12.已知 中,AB=17 cm,BC=30 cm,BC上的中线AD=8 cm,请你判断 的形状,并说明理由 .

13.一种机器零件的形状如图18-2-6,规定这个零件中的 A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图(单位:mm),这个零件符合要求吗?

14.如图18-2-7,四边形ABCD中, ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

15.为了庆祝红宝石婚纪念日,詹克和凯丽千家举行聚会。詹克忽然发现他的年龄的平方与凯丽年龄的平方的差,正好等于他的'子女数目的平方,已知詹克比凯丽大一岁,现在他们都不到70岁。请问,当年结婚时,两个人各是多少岁?现在共有子女几人?(在西方,结婚40周年被称为红宝石婚,且该国的合法结婚年龄为16岁)

16.有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去。如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。

四、思维拓展

17.给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,

(1)你能发现关于上述式子的一些规律吗?

(2)请你运用规律,或者通过试验的方法(利用计算器),给出第五个式子。

18.我们知道,以3,4,5为边长的三角形为直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等。

(1)请你根据上述四组勾股数的规律,写出第六组勾股数;

(2)试用数学等式描述上述勾股数组的规律;

(3)请证明你所发现的规律。

五、中考热身

19.(福州市)如图18-2-8,校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______m.