在教学工作者开展教学活动前,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?问渠那得清如许,为有源头活水来,这里是勤劳的小编帮助大家分享的《数的整除》教案3篇,仅供借鉴,希望可以帮助到有需要的朋友。
数的整除教案 篇一
教学目的:知识与能力:使学生掌握能被3整除的数的特征。
过程与方法:引导学生观察各数上的数的和的特征,减缓学生思考的难度,最后让学生概括出能被3整除的数的特征。
情感与态度:渗透“实践第一”的辩证唯物主义观点。培养学生动脑思考,综合概括的能力。
教学过程:
一、复习导入
在12、15、30、45、70、80、100、125中
(1)能被2整除的数有________;
(2)能被5整除的数有________;
(3)能同时被2、5整除的数有________;
这节课,我们一起来研究能被3整除的数的特征。
板书:能被3整除的数
请任意说出一个能被3整除的数,请你再任意说出一个不能被3整除的数。
老师在这些不能被3整除的数的后面或前面或中间某个位置添上一个数字,就能使其能被3整除,请同学们检验。
能被3整除的数究竟有什么特征呢?让我们共同研究这个问题。
二、讲授新课
刚才你们说12能被3整除,现在我把个位上的数与十位上的数调换位置,变成21,21也能被3整除。你们说48能被3整除,那么84也能被3整除。不信,请口算一下。
刚才有一位同学说123能被3整除,看着这个数,你能像刘老师一样再说出几个能被3整除的数吗?谁来试试?
再看这个四位数:1251,请同学们先口算1251能被3整除吗?看着这个数,你能再说出几个能被3整除的数吗?
板书:(1)1221
(2)4884
(3)123231213......132
(4)125115212151......2511
请你们仔细观察黑板上的四组数,想一想,每一组里的数,什么变了,什么没变?
1、每一组里的数,组成这些数的数字没变,数字的排列顺序有变化。
2、每一组里的数,和没有变。
3、每一组里的数,积没有变。
1与2分别是个位上的数与十位上的数,那么和没有变,可以说成是个位上、十位上的。数的和没有变吗?第一组数积没有变,应当怎么说呢?
请同学们再看第二组数,个位上、十位上的数和与积变了吗?那么第三组数、第四组数呢?
板书:和(能被3整除)
积(不一定能被3整除)
l+2=31×2=2
4+8=124×8=32
1+2+3=6
1×2×3=6
1+2+5+1=9
1×2×5×1=10
如果还有几组像这样能被3整除的数是五位数、六位数,和与积没有变,这句话应当怎么说呢?这样说比较罗嗦,你能不能用一句话概括出来。
板书:各个数位上的数的和
请同学们结合老师的板书,思考并讨论三个问题。
1、各个数位上的数的和以及各个数位上的数的积与3有什么关系?
2、判断一个数能否被3整除,看个位行吗?应当看什么呢?
3、请你看着黑板,试着出能被3整除的数的特征。
三、巩固练习
1、判断下面几个数,哪些能被3整除?为什么?
5978307219700230071
2、这是讲新课前刘老师在一个本不能被3整除的数的后面或前面或中间又添上了一个数字,组成的数就能被3整除了。你想一想还可以添几?要想使3□0能被3整除,方格里可以填几?
3、卡片上的数可能被2整除,也可能被5整除,还可能被3整除,它到底能被几整除呢?请你用手指表示出来。
581152078045108
4、请你用以下6个数字,组成能同时被2、5、3整除的三位数。其中最大的一个是几?最小的一个是几?
012345
四、课堂(略)
数的整除教案 篇二
教学目标
1.明确自然数和整数的意义;
2.理解数的整除、约数、倍数、质数、合数的意义;
3.掌握能被2,3,5整除的数的特征。
教学重点和难点
使学生明确数的整除、约数、倍数、质数、合数的内在联系,形成知识网络。
教学过程设计
(一)复习整除概念
出示以下算式:
4÷2 0。8÷0。4 1÷3
30÷5 7÷3 18÷4
上面这些题都用什么方法计算?(除法)
(板书,用集合圈把算式圈起来。)
直接口答结果:
1÷3和7÷3能不能得出有限小数?为什么?(除不尽)
(把1÷3 7÷3两个算式移到除不尽的圈里)另外几个算式都能除尽吗?(能除尽)
(板书:除尽)
在能除尽的算式里,哪些是整除式?(4÷2 30÷5)
(板书:整除。并把4÷2,30÷5两个算式放在整除圈里。)
谁来说说什么叫“整除”?
(指名叙述整除的概念。)
整除和除尽有什么关系?(凡是整除的算式一定能够除尽,但是除尽的算式不一定能整除。)
(板书:数的整除复习(一))
(二)复习整数和自然数的概念
在讲数的整除时,我们所说的数,一般只指自然数,不包括0。0是什么数?
板书:
上面的整除算式中,谁能被谁整除?(30能被5整除,4能被2整除。)
30能被5整除,我们就说30是5的倍数,5是30的约数。
谁来把约数、倍数的概念概括一下?(板书:约数、倍数)
判断老师这样说对吗?为什么?
数a能被数b整除,a叫倍数,b叫约数。
(指名说,并说明为什么不对。)
请你想想,一个数的倍数的个数有多少?最小是几?最大呢?
一个数的约数的个数是有限的,还是无限的?最小是几?最大是几?你会求一个数的约数和倍数吗?
口答:(幻灯出示)
(1)16的`约数有哪些?( )
(2)1~30各数中,2的倍数有( ),能被3整除的数有( ),有约数5的数为( )。
你们说说,能被2整除的数有什么特征?
是不是所有能被2整除的数都叫偶数?(板书:偶数)
相反,不能被2整除的数叫奇数?(板书:奇数)
能被3整除的数的特征呢?
能被5整除的数的特征呢?
现在老师想看看你们是不是真正掌握了。
(幻灯出示)
(1)请用数字4,7,0,5,1写出一个能被2整除的最大三位数。(学生在反馈小黑板上写出754。)
754最少减去几就能被3整除?为什么?
(2)能同时被3,5整除的最小偶数是( ),最大三位数是( )。
(3)在下列各数的方框中填上适当的数字,使这些数能同时被2,3,5整除。
24□ 9□0
(学生在反馈小黑板上写出数。)
我们掌握了数的整除特征,就能很快判断出一个数能被哪几个数整除,也就找出了这个数的约数。我们做一次找约数的竞赛,找出下面各数的约数。
(幻灯出示)
37的约数有( );
29的约数有( );
17的约数有( );
2的约数有( );
1的约数有( );
4的约数有( );
18的约数有( );
33的约数有( );
6的约数有( )。
根据约数个数的情况,可以把这几个数分成几类?
(板书)
只有2个约数,也就是除了1和它本身以外,不再有别的约数,这个数叫什么?
什么叫合数?1是质数还是合数?
找一找,你们手里的数字卡片有质数吗?举起来。有合数吗?举起来。
谁既不是质数,也不是合数?举起来。
(三)练习
1.判断题。(对的画“√”,错的画“×”)
(1)一个合数至少有三个约数。 ( )
(2)一个质数与2的和一定是奇数。 ( )
(3)两个质数相乘的积一定是合数。 ( )
2.选择题。
(1)下面三个数中既是奇数又是质数的数是 [ ]。
A.43
B.9
C.51
(2)下面三个数中是偶数而不是质数的数是 [ ]。
A.14
B.47
C.2
(3)最小的质数与最小的合数的积是 [ ]。
A.6
B.8
C.4
看来我们做上面题时,要想正确迅速地选择答案,不但20以内的质数要熟,而且百以内的质数表也要熟。百以内的质数有多少个?
(学生起立,边拍手边背百以内质数的顺口溜。)
二,三,五,七,一十一;
一三,一九,一十七;
二三,二九,三十七;
三一,四一,四十七;
四三,五三,五十九;
六一,七一,六十七;
七三,八三,八十九;
再加七九,九十七;
25个质数不能少;
百以内质数心中记。
(四)总结
这节课我们复习了数的整除的一部分知识,并用网络图表示出来了。谁能把各部分知识之间的联系说说?
同学们总结得很好,请打开书。
1.做书上的练习。
2.补充题。
判断:(对的画“√”,错的画“×”。)
(1)奇数都是质数。 ( )
(2)偶数都是合数。 ( )
(3)一个数的约数总比这个数的倍数小。 ( )
(4)15×12的积一定能同时被2,3,5整除。 ( )
(5)两个不同的奇数的和是合数。 ( )
(6)10以内质数和是1+2+3十5+7+9=27。 ( )
(7)一个除法算式只要商是整数,没有余数就叫整除。 ( )
课堂教学设计说明
本节课是根据整除这部分知识之间的内在联系而精心设计的。边复习边板书,边复习知识点边练习,最后使学生形成知识网络。
第一步:通过6道除法式题,用集合圈逐层分类,复习了整除的概念,明确了整除和除尽的关系,以及约数、倍数的概念。
第二步:复习整数和自然数的概念,明确我们现在研究数的整除是在自然数范围研究的。自然数按能否被2整除而分为奇数和偶数;按照约数的个数分,分为质数、合数和1。
第三步:根据知识之间的内在联系,做综合练习,使学生灵活地运用所学的知识解决问题。
板书设计
数的整除教案 篇三
教学内容:
苏教版义务教育教材第十册第45~47页练习八(1~7)
教学目标:
1、能说出能被2、5、3整除的数的特征,知道奇数、偶数的概念;
2、会正确判断一个数是否能被2、5或3整除;
3、在探求特征的过程中增强数学模型意识,培养数感以及分析、综合、抽象、概括等思维能力及进行数学交流的能力。
教学重点:抽象、概括出能被2、5、3整除的数的特征。
教学难点:引导学生发现能被3整除的数的特征。
教学准备:师生准备百数表、集合圈图(如课本),小黑板或投影仪。
教学过程:
第一课时
一、创设情境激发兴趣
1、师:前面我们一起学习了整除、约数和倍数,你们愿不愿意和老师比赛做下面这道题目?
2、
(师生比赛)
2、师:你们任意报一个整数,我都能马上告诉它能否被2或5整除。(指名学生报数,教师判断,其他学生笔算验证。)
3、师:你们想不想知道其中有什么秘密?今天我们一起去发现这个秘密好不好?(板书:能被2、5整除的数的特征)
[通过师生比赛的形式激起学生的好奇心,引发他们的探究欲望,为后面的探究学习打下良好的心理基础。]
二、探究规律概括特征
1、探究能被2整除的数的特征。
师:你想怎样去探究能被2整除的数的特征?(组织学生交流自己的设想。)
[操作前的思考和交流,有利于学生明确操作的目标和方向,养成先思后行的习惯,避免操作的盲目性。]
拿出课前准备的。操作材料,你可以按自己的想法去发现这个秘密,也可以借助百数表。
(1)学生操作、寻找规律:
师:你从上面的操作中发现什么规律?
(2)组织交流:
师:同桌之间互相把自己的发现说一说。(同桌交流)
师:你是怎样探究的?发现能被2整除的数怎样的特征?(集体交流)
(当有学生汇报用百数表探究的时候,出示下图,并提问。)
师:你为什么会用百数表探究,你能描述一下能被2整除的数在百数表中的排列模型吗?
[通过交流帮助学生在非正式的直觉的观念与抽象的数学语言符号之间建立起联系,发展和深化学生对数学的理解,并为学生提供反思自己的操作和探究过程的机会。]
123456789
10111213141516171819
20212223242526272829
30313233343536373839
40414243444546474849
5051525354......
(3)概括总结出能被2整除的数的特征。(板书:个位上是0、2、4、6、8的数,都能被2整除。)
(4)教师讲解:所以判断一个数能否被2整除,只要看它的个位。(并指出)能被2整除的数叫做偶数;不能被2整除的数叫做奇数。(板书)
(5)练习、运用:判断下列各数中偶数有哪些?奇数有哪些?
2435、346、127、303、284、0
[探究过程中有意识地引导学生使用百数表,可以提高操作的效率,同时让学生直观感知能被2整除的数在百数表中的排列规律,渗透模型意识,并为最后的概括总结提供有力的表象支撑。]
2、发现能被5整除的数的特征。
(1)学生自主探索。
(2)集体汇报交流。
(3)练习巩固:完成第46页“练一练”。并找出能同时被2和5整除的数。
[有了前面探索的基础,这一环节充分放开,让学生自主探索,进一步提高学生的自主探究和数学交流的能力。]
三、巩固练习:
1、的数能被2整除;不能被2整除的数叫做数。
的数能被5整除;
2、练习八1、2指名学生口答。
四、课堂总结:今天我们探讨什么问题,你有哪些收获?
五、课堂作业:练习八3、4