1. 主页 > 范文大全 >

初中数学教案模板(最新5篇)

教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。漂亮的高考家长帮网小编为您分享了初中数学教案模板(最新5篇),希望能够给朋友们的写作带来一定的启发。

初中数学教学教案 篇一

教学目标

1、知识与技能

①相似三角形对应高的比,对应角的比,对应叫平分线的比和对应中线的比和相似比的关系。

②利用相似三角形的性质解决一些实际问题。

2、情感与态度

①相似三角形中对应线段的比和相似比的关系,培养学生的探索精神和合作意识。

②通过运用相似三角形的性质,增强学生的应用意识。

重点与难点

重点:相似三角形中对应线段比值的推倒,运用相似三角形的性质解决实际问题。

难点:相似三角形的性质的运用。

教学思考

通过例题的分析讲解,让学生感受相似三角形的性质在实际生活中的应用。

解决问题

在理解并掌握相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比的过程中,培养学生利用相似三角形的性质解决现实问题的意识和应用能力

教学方法

引导启发式、课前准备、幻灯片

教学设计

教师活动学生活动

一、创设问题情境,引入新课

带领学生复习相似多边形的性质及相似三角形的性质,并提出疑问“在两个相似三角形中,是否只有对应角相等,对应边成比例这个性质?”从而引导学生探究相似三角形的其他性质。

认真听课、思考、回答老师提出的问题。

二、新课讲解

1、做一做

以实际问题做引例,初步让学生感知相似三角形对应高的比和相似比的关系。

钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,图纸上的△ABC表示该零件的横断面△ABC,CD和CD分别是它们的高。

(1)各等于多少?

(2)△ABC与△ABC相似吗?如果相似,请说明理由,并指出它们的相似比、

(3)请你在图4-38中再找出一对相似三角形、

(4)等于多少?你是怎么做的?与同伴交流、

阅读课本材料,弄清题意,根据已有的经验积极思考,动手操作画图,在练习本上作答。

依次回答课本提出的4个问题并加以思考

2、议一议

根据上面的引例让学生猜测,证明相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比。

已知△ABC∽△ABC,△ABC与△ABC的相似比为k、

(1)如果CD和CD是它们的对应高,那么等于多少?

(2)如果CD和CD是它们的对应角平分线,那么等于多少?如果CD和CD是它们的对应中线呢?

学生经历观察,推证、讨论,交流后,独立回答。

3、教师归纳

总结相似三角形的性质:

相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。

学生理解、熟记。

归纳、类比加深对相似性质的理解

三、课堂练习:

例题讲解,利用相似三角形的性质解决一些问题。

如图所示,在等腰三角形ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形。

(1)△ASR与△ABC相似吗?为什么?

(2)求正方形PQRS的边长。

阅读例题材料,弄懂题意,然后运用所学知识作答。写出解题过程。

四、探索活动:

如图,AD,AD分别是△ABC和△ABC的角平分线,且AB:AB=BD:BD=AD:AD,你认为△ABC∽△ABC吗?

针对此题,学生先独立思考,然后展开小组讨论,充分交流后作答。

五、课时小结

指导学生结合本节课的知识点,对学习过程进行总结。

本节课主要根据相似三角形的性质和判定判定推导了相似三角形的性质、相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比。

学生畅所欲言,谈学习的体会,遇到的困难以及获得的启发。

六、布置课后作业:

课后习题节选。

独立完成作业。

初中数学教学教案 篇二

教学目标:

1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题。

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律。

教学重点:

使学生准确、熟炼、灵活地运用切线的判定方法及其性质。教学难点:学生对题目不能准确地进行论证。证题中常会出现不知如何入手,不知往哪个方向证的情形。

教学过程:

一、新课引入:

我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题。

二、新课讲解:

实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤。p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线。

分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形。所以辅助线应该是连结oc.只要证od⊥cd即可。亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果。而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等。

∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证。证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴。p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切。

分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点。这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切。题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.

请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的。

练习一

p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切。分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况。这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决。证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切。

分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况。辅助线的方法同第1题,证法类同。只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明。证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?

(答案)可通过“角、角、边”证rt△odb≌rt△oec.

三、新课讲解

:为培养学生阅读教材的习惯让学生阅读109页到110页。从中总结出本课的主要内容:

1.在证题中熟练应用切线的判定方法和切线的性质。

2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握。

(1)公共点已给定。做法是“连结”半径,让半径“垂直”于直线。

(2)公共点未给定。做法是从圆心向直线“作垂线”,证“垂线段等于半径”。

四、布置作业

1.教材p.116中8、9.2.教材p.117中2.

初中数学教案模板 篇三

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x p="" <10)就是所求的函数关系式。<="" <x="" 对于3,教师可提出问题,(1)当ab="xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0"

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件。该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0<x

y=-2x2+20x(0<x<10)……………………………(1) p="" (0≤x≤2)……………………(2) www.kaoyantv.c www.kaoyantv.com om

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项。

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y=5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义。

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

初中数学教案模板 篇四

一、指导思想:

按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

二、教学内容

本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。

三、教学目标

知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教学措拖

1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。

3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。

初中数学教学教案 篇五

一、学习目标:

1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。

2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。

二、学习重点:

正确运用二次根式的性质及运算法则进行二次根式的混合运算。

学习难点:二次根式计算的结果要是最简二次根式。

三、过程

知识准备

1、满足下列条的二次根式是最简二次根式。

2、回忆有理数,整式混合运算的顺序。

3、回忆并整理整式的乘法公式。

方法探究1

⑴(512+23)x15

⑵(3+10)(2-5)

归纳:

尝试练习:

⑴(3+22)x6

⑵(827-53)6

⑶(6-3+1)x23

⑷(3-22)(33-2)

⑸(22-3)(3+2)

⑹(5-6)(3+2)

方法探究2

⑴(3+2)(3-2)

⑵(3+25)2

归纳:

尝试练习:

⑴(5+1)(5-1)

⑵(7+5)(5-7)

⑶(25-32)(25+32)

⑷(a+b)(a-b)

⑸(3-2)2

⑹(32-45)2

⑺(3-22)(22-3)

⑻(a-b)2

⑼(1-23)(1+23)-(1+3)2

⑽(3+2-5)(3+2+5)

例题解析

1、计算:(22-3)2011(22+3)2012。

2、若x=10-3,求代数式x2+6x+11的值。

3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。

内反馈

1、计算12(2-3)=

2、计算⑴(2+3)(2-3)=

⑵(5-2)2010(5+2)2011=

3、计算:

⑴12(75+313-48)

⑵(1327-24-323)12

⑶(23-5)(2+3)

⑷(5-3+2)(5+3-2)

⑸(312-213+48)÷23

4、已知a=3+2,b=3-2,求下列各式的值。

⑴a2-b2

⑵1a-1b

⑶a2-ab+b2

5、若x=3+1,求代数式x2-2x-3的值。