1. 主页 > 范文大全 >

《平行四边形面积的计算》教学设计优秀3篇

作为一名专为他人授业解惑的人民教师,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案要怎么写呢?高考家长帮小编精心为大家带来了《平行四边形面积的计算》教学设计优秀3篇,希望能够对大家的写作有一点帮助。

《平行四边形面积的计算》教学设计 篇一

教学目标:1.经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验。

2.知道平行四边形的面积公式。

3.会求平行四边形的面积。

4.利用教师的情感特征调动学生学习的积极性和主动性。

教学重点:1.平行四边形面积公式的推导过程。

2.应用平行四边形的面积公式进行计算。

教学难点:平行四边形面积公式的推导过程。

教学关键:转化前后平行四边形与长方形面积及各部分间的对应关系。

教学过程:

一。启动导入:

1、电脑出示长方形图形:

指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积。

指生口答

问:你是怎么做的?

②出示:

这还是长方形吗?你能求出它的面积吗?( 生:18平方厘米。)

生小组内先交流一下,指生反馈

得出两种方法:(1)数格子法 (2)将它转化成一个长方形,再求出它的面积。师重点评讲第二种方法。

③出示: 这个图形,你会求它的面积吗?( 生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形。再根据长方形的面积公式长×宽就可以求出这个图形的面积。(电脑课件演示转化过程).

2、刚才, 这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)

把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。

刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。)

3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。(板书课题)

二、 主动探索:

1、引导探索:不规则的图形可以转化成长方形来求出它的面积。平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。

电脑出示:⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积。

转化后思考:

①转化成怎样的图形?你是如何转化的?(如何画线)

②通过转化你发现了什么?

③说明了什么?学生分四人小组讨论,教师点拨。

学生汇报。

学生可能出现的情况:

问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)

生:我们把平行四边形沿高剪开,变成了长方形。转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。说明求出了长方形的面积,也就求出了平行四边形的面积。

小结:尽快我们采用了不同的方法,都是把平行四边形转化为长方形。并且知道转化前后面积的大小没有变化。下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的面积计算公式。

2、推导公式:

(1)请同学们对照转化前后两个图形各个部分之间的对应关系,以四人小组为单位,小组合作推导出平行四边形的面积计算公式。

四人小组讨论推导平行四边形的面积,教师点拨。

学生汇报:长方形是由平行四边形的面积转化而来的。转化前后面积的大小没有变化,所以长方形的面积等于平行四边形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积是长×宽,所以,平行四边形的面积=底×高。

(2)电脑课件演示平行四边形转化为长方形的过程。结合图重点讲解平行四边形面积公式的推导。

引导学生按下面的思路分析:

我们把其中的一个平行四边形沿高剪开,通过平移,就变成了( ),在转化过程中,( )没有发生变化。说明长方形的面积就( )平行四边形的面积,长方形的长相当于平行四边形的( ),长方形的宽相当开平行四边形的( )。长方形的面积公式是( ),所以平行四边形的面积公式是( )。

指生尝试说,小组内互说,指生说

(3)介绍字母公式:如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,上面的公式可以写成s=ah。

大家说,平行四边形的面积公式是什么?要求平行四边形的面积,需要知道什么条件就可以了?(平行四边形的底和高)

三、 深化体验:如果给我们平行四边形的底和高,让你求平行四边形的面积,你会计算吗?

1.口算:

平行四边形

底 10厘米 3分米

高 17厘米 12分米

面积

2.算出下面平行四边形的面积:

3、出示书上“试一试”

指生读题,说说已知什么,求什么?

生独立解答,反馈,说说应用了哪一个计算公式?

4、拿出你手中的平行四边形纸片,想法求出它的面积。

四。小结全课:谁来说一说这一节课,我们学会了哪些什么?

五。课后延伸:这是一个?(平行四边形)要求平行四边形的面积需要知道哪些条件?(平行四边形的底和高)

课件演示:平行四边形出现对角线,将平行四边形变成三角形。问:这还是平行四边形吗?(三角形)

如何求三角形的面积呢?请同学们下课后思考。

课后反思:

这节课的教学,我认为比较成功的地方是:

一。 调动了学生学习的积极性和主动性

一节课上得怎么样,不是看教师教得怎么样,关键是看学生学得怎么样,学生是不是学得主动、自然,学生学习是不是具有主动性,是不是具有浓厚的学习兴趣,是检验一节课上得成功与否的标志。这节课我使用了多媒体教学课件,通过图文并茂,把静止的问题活动话,激发了学生学习的积极性和主动性,节省了课堂教学的时间。

学生将两个不规则的图形转化成了长方形求出了不规则图形的面积,接着出示一个平行四边形,如何求平行四边形的面积呢?这节课我们就来学习平行四边形面积的计算。这样引入新课,调动了学生学习的兴趣。

学生学习平行四边形面积的计算,是通过学生自主探索得来的。这样学生在自主探索中体验了成功的快乐,学生学得主动,学得有趣。

学生学会平行四边形计算后,平行四边形沿对角线分成两个三角形,再变成三角形。如何求三角形的面积呢?引入下节课学习的内容。这样的课后延伸,激发了学生进一步探求的欲望,为学生学习三角形的做了铺垫。

二。 体现了学生做数学的思想

这节课教学的是平行四边形的认识,这节课的思想、方法和知识不是教师教给学生的,而是通过学生的自主探索得来的,是通过学生做数学得来的。首先出示两个可转化为长方形的不规则图形,长方形的面积会求了,这个图形的面积又如何计算呢?但学生两次说出将凸出来的部分切下来移到另一边,拼成了一个长方形。这样,产生了转化的思想。如何利用转化的思想求平行四边形的面积呢?这一过程的完成不是教是教给学生的,而是通过学生的两次小组合作探究完成的。第一次小组合作将平行四边形转化为长方形,第二次根据转化前后面积及各部分间的对应关系推导平行四边形的面积。这样让学生去做数学,让学生参与知识的形成过程,让学生在做中体验和感悟数学,使学生在学习知识的同时,形成情感的体验,形成经验。

《平行四边形面积的计算》教学设计 篇二

平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:

一、遵循“猜想——验证——推导——应用”教学过程。

在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。

二、注重合作交流,追异求新。

本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。

三、课堂教学中,教师应加大“放”的力度。

学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上 根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。

《平行四边形面积的计算》教学设计 篇三

一、 说教材

1、 教材分析

本节课的知识点是平行四边形面积的计算,学生对于平面图形中边与边不成直角的情况的面积的计算是第一次遇到。学生要用"转化"的思想解决平行四边形面积的计算问题,而后面学习三角形,梯形等平面几何图形的面积推导都需要用到"转化"的思想所以这节课的学习犹为重要。

2、 学情分析

教是为学生的学服务的,只有了解学生的学情,服务才能到位,才能更好的突出学生的住体地位,五年级的学生不论是学习习惯还是思维水平都有了一定的基础。从学生的心理特点来看这部分的内容也是符合学生的认知水平的。

3、 教学目标

(1) 知识技能:探索平行四边形面积计算公式的形成过程,并能运用公式解决生活中的数学问题。

(2)过程于方法:在动手操作合作交流的过程中体验平行四边形面积公式的推导过程,感受探索、研究的乐趣。

(3)情感与态度:培养学生团结协作,运用数学解决实际问题的能力。

4、 重点、难点:探究平行四边形面积计算公式。

关键:运用转化的方法探究平行四边形面积的计算。

二、 说教法、学法

(1)改变过去教师讲学生听满堂灌、老师问学生答满堂问的教学模式,力求通过平等的师生对话培养学生的创新精神和实践能力。

(2)利用多媒体课件辅助教学提高课堂教学效率,让学生经历从具体事物抽象成数学模型,再从数学知识还原到现实世界的过程。获得由浅入深的数学学习经历。

(3)引导学生进行反思,让学生畅谈什么地方表现的最好,什么地方自己进步了,使每个孩子都觉得自己使成功者。

(4)通过合作学习,让每个学生再小组活动中都有事要做、有事可做,并做到有分工有合作,处理好小组合作与独立思考的关系。

(5)不断丰富学生的学习方式,通过复习发现问题,通过思考提出问题,通过交流分析问题,通过合作得出结论,作出调整。再通过反思提出问题……在循环中增强了学生的问题意识。

三、 说教学程序

(一) 创设情境,渗透学法

现实的富有挑战性得情境最能够激发学生的兴趣,调动学生积极的学习情感,引法学生得学习兴趣。在课的开始创设一个这样的一个情境:在美丽的操场上有很多不同形状的花坛,(长方形、正方形、平形四边形)问你想知道计算它们的面积是多少吗?学生有的想知道长方形花坛的面积,有的想知道正方形花坛的面积,有的想知道平形四边形花坛的面积,平行四边形的面积怎么算就成了学生学习的需求。紧接又出示一些不规则图形的花坛上面画着方格,又问:这些不规则的花坛的平面图形的面积你会求吗?你能很快的说出他们的面积是多少吗?为了很快的寻求答案,学生很自然的想到了割补转化的方法。这样就为后面探究平行四边形面积的计算做了铺垫。

(二) 小组合作,探究面积

数学课程标准提出:有效的数学学习不能单纯的依靠模仿和记忆,动手操作、自主探索、合作交流是学习数学的有效方式,平行四边形的面积的计算怎样探究,从哪里开始探究学生有一定的困难。这个环节的设计可以采用小组合作探索平行四边形的面积。当学生提出设想:我们能不能把平行四边形转化成学过的图形求出它的面积时,我就让他们尝试:动手试试看能不能转化成以学过的平面图形。1、老师要求同学们先独立思考,然后闭上眼睛想象一下转化后的图形的样子,再开始小组合作。2、引导小组合作,并让小组长做好分工。3、学生展示小组合作的成果,学生们可能会有很多种转化的方法,但要让学生把每一种转化的过程展示出来。4、组织小组讨论:观察转化后的图形与原来的平行四边形之间有什么关系?学生说的面可能会很广,要把他们引导到面积、长、底、宽、高之间的关系。在这个过程中学生可以在小组内发表自己的见解,倾听同学的想法,不断调整自己的方案,经历平行四边形面积计算公式的推导过程。这样才能学会合作交流,提高他们的数学素养。

(三)联系生活、灵活运用

学生数学学习的目的在于运用,通过练习使学生加深对书本数学与生活数学的区别,密切数学与生活的联系,也为了更好的培养学生运用数学解决简单的实际问题的能力。在这个环节中设计可设计:

1、解决课前第一个情境中的求平形四边形花坛面积的问题。操场上要设计更多的不同形状的花坛,(有学过的平面图形,有没有学过的平面图形)让学生任选其中的两个算出它的面积。

2、出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,让后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。

3、设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高得平行四边形不管它得形状是什么样的,它们的面积总是相等的。

(四)反思交流、拓展延伸

学生只有学会不断的反思,才能够不断的进步,在课末组织学生畅谈在这节课中你觉得什么地方表现的最好,什么地方还有待于提高,什么人最值得你学习最后引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。

总之,本节课努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。